×

级数发散 meaning in Chinese

divergence of a series
divergence of series

Examples

  1. Theorem 1 ( bounded sum test ) a series of nonnegative terms converges if and only if it ' s partial sums are bounded above
    定理2 (比较审敛法)设和都是正项级数,且。若级数收敛,则级数收敛;反之,若级数发散,则级数发散。
  2. Theorem 2 ( ordinary comparison test ) suppose that and are positive series , and . if the series converges , so does ; if the series diverges , so does the series
    推论设和都是正项级数,如果级数收敛,且存在自然数,使得当时,有,则级数收敛;如果级数发散,且当时,有成立,则级数发散。
  3. Definition the infinite series converges and has sum if the sequence of partial sums converges to , that is . if diverges , then the series diverges . a divergent series has no sum
    定义如果级数的部分和数列有极限,即,则称无穷级数收敛,这时极限叫做这级数的和,并写成;如果没有极限,则称无穷级数发散

Related Words

  1. 级数
  2. 球面发散
  3. 升幂级数
  4. 复级数
  5. 生成级数
  6. 子级数
  7. 主级数
  8. 有限级数
  9. 渠道级数
  10. 整级数
  11. 级数的余部
  12. 级数的重排
  13. 级数反演法
  14. 级数和
PC Version

Copyright © 2018 WordTech Co.