特殊方向 meaning in Chinese
exceptional direction
Examples
- We discuss the global topological structure of the homogeneous fifth system with one and two special directions , and give their coefficient conditions
论了一类有一对和两对特殊方向的平面齐五次系统的全局结构,并给出了它们的系数条件 - Second , give some examples , make them have one to six special direction , through solve these examples , demonstrate the conclusion of these theories in chapter 2 are c - orrectly
二、引入具体实例,使其分别具有一到六对特殊方向,并符合某些定理的系数条件,通过对例题的实际求解,来论证第二章所得出的定理的结论的正确性。 - The discussing process follows the steps below : first , suppose the system ( 1 ) has only one finite singular point ( 0 , 0 ) . then we can assume b50 = 0 , which special direction is determined by equation g ( 0 ) - 0 , introduce poincare transformation to discuss infinite singular points , according to the coefficient conditions , list all possible infinite singular points and special directions , judging their type , drawing out all kinds of phase portraits
本文主要内容为:一、假设系统( 1 )只有唯一的有限远奇点( 0 , 0 ) ,则不妨设b _ ( 50 ) = 0 ,其特殊方向由示性方程g ( ) = 0给出,引进poincare变换研究无穷远奇点,再根据各定理中的系数条件,列出系统所有可能的无穷远奇点和特殊方向,并判断其类型,由此画出系统的各种可能的全局相图。 - We would use these expressions to fit experiment data to get a conductivity value . we have made a model of thermally uniaxial material to find the expression between the conductivity and principal conductivity . we have gained four expressions of conductivity in four special directions by transforming coordinates
为了找到实验拟合出的热导率值与主热导率的数量关系,我们建立了热单轴材料的样品模型,继而用坐标变换的方法推导出四个特殊方向上的热导率表达式。 - In this dissertation , we study the global topological classification and coefficient conditions of the plane homogeneous fifth polynomial differential system the main techniques used in this thesis includes the methods of the global structure and coefficient conditions of the plane homogeneous quadratic and cubic system mentioned in the paper [ 1 ] of professor ye yanqian , and the paper [ 2 ] of professor li xue min , also includes the idea to high - order critical point of professor zhang zhifen , lu yulin and han yuliang etc . due to the degree of polynomial in the right of equal - sign crease , when we discuss the global structure , the more special directions , the more difficulty in drawing phase portraits of this system
本文主要讨论一类平面齐五次多项式微分系统的全局拓扑结构及系数条件。借鉴了文献[ 1 ]叶彦谦教授对平面齐二次系统的全局结构及系数条件和文献[ 2 ]李学敏教授对平面齐三次系统的全局结构及系数条件的研究方法,同时综合了张芷芬教授、陆毓麟教授、韩玉良教授等人对高次奇点的研究思想进行讨论。这样,由于等号右边多项式次数的增加,讨论系统的全局结构时,可能出现的特殊方向就会增加,在作全局相图时,难度增大了。