海森堡群 meaning in Chinese
heisenberg group
Examples
- M . m . nessibi and k . trimeche studied the theory of generalized wavelet transform on the underlying manifold of square integrable radial functions space on the heisen - berg group hn . they constructed an inversion formula of the radon transform on the underlying manifold by means of generalized wavelet
M . m . nessibi和k . trim che研究了海森堡群h _ n上平方可积径向函数空间,在其基础流形上建立了广义小波变换理论;并利用所引进的广义小波,得到radon变换在该空间上的一个逆公式 - In chapter two , we first give the condition of generalized wavelets on l2 ( x ) by using the gelfand transform , where x = r + r denotes the underlying manifold of square integrable polyradial functions on the heisenberg group hn . then , we establish the theory of generalized wavelet transform and generalized wavelet packet transform on it
在第二章中,我们利用gelfand变换刻画了海森堡群h _ n上平方可积柱径向函数空间的基础流形laguerre超群x = r _ + ~ n r上的广义小波,讨论了该超群上的广义小波变换与广义小波包变换