正规算子 meaning in Chinese
normal operator
normal transformation
Examples
- Every normal operator is trivially subnormal .
每一个正规算子显而易见地是次正规的。 - The cheapest way to get one is to invoke the spectral theorem and to conclude that normal operators always have non-trivial invariant subspaces .
取得这样结果的最省力的尝试是引用光谱定理而得到正规算子恒有非平凡不变子空间的结论。 - In this paper , we discuss a new class of m - paranormal operators and give the properties of these operators . further , we also give an existence condition of the invariant subspace
讨论了一个新的算子类: m -仿正规算子.给出了这一类算子的部分性质及不变子空间存在的条件