正定阵 meaning in Chinese
positively definite matrix
Examples
- A survey on completely positive matrices
有关完全正定阵的综述 - The left and right inverse eigenvalue problem for symmetric positive definite and symmetric positive semidefinite matrices on subspace
子空间上的对称正定及对称半正定阵的左右特征值反问题 - This thesis mainly considers ordinary linear regression model and generalized one , that is , models and are involved . in term of the unknown parameter , it is necessary to study its estimation
论文主要针对一般线性回归模型和广义线性回归模型,即: ,和,其中,为向量,为设计矩阵,且,为向量,为向量,是已知的正定阵。 - In this paper it is shown that a partial toeplitz pattern has a toeplize positive definite completion if and only if the diagonals for the specified entries are 0 , t , 2t , . . . , pt ( in which the main diagonal is numbered 0 )
本文讨论部分toeplitz正定阵的toeplitz正定完成问题,证明了一个部分正定toeplitz模式存在正定toeplitz完成的充分必要条件是已知元所在对角线的标号成等差数列。 - In chapter 2 , we give some important properties of metapositive definite matrices , the expression of real and imaginary part about eigenvalues of real square matrices as well as the range of eigenvalues of real square matrices ( especially the range of their imaginary part ) . on the other hand , we sum up , establish and extend some necessary and sufficient conditions of metapositive definite matrices roundly . in chapter 3 , we give some important properties of complex positive definite matrices , the expression of real and imaginary part about eigenvalues of complex square matrices as well as the range of eigenvalues of complex square matrices . on the other hand , we sum up , establish and extend some necessary and sufficient conditions of complex positive definite matrices roundly . in summary , we discuss in terms of set theory the relation among real symmetric positive definite matrices , hermitian positive definite matrices and two types of generalized positive definite matrices - metapositive definite matrices and complex positive definite matrices
第一章:除引入hermite矩阵、 hermite正定矩阵和实对称正定矩阵较重要的性质外,还建立了它们的其它一些重要性质,尤其较全面地总结和建立了它们的若干充分和必要条件;第二章:建立了亚正定阵的一些重要性质,给出了实方阵的特征值实部和虚部的表达式,并导出了实方阵的特征值范围尤其是导出了其虚部范围,同时着重较全面地总结、建立和推广了亚正定阵的若干充分和必要条件;第三章:建立了复正定矩阵的一些重要性质,给出了复方阵的特征值实部和虚部的表达式,并导出了复方阵的特征值范围,同时着重较全面地总结、建立和推广了复正定矩阵的若干充分和必要条件;全文小结:从集合论的观点出发,对已讨论过的四类正定矩阵? ?实对称正定矩阵、 hermite正定矩阵、亚正定矩阵和复正定矩阵之间的关系作了比较细致的论证与探讨。