×

正则空间 meaning in Chinese

regular space

Examples

  1. Completely regular space
    完全正则空间
  2. On its basis , gao zhimin introduced the concept of pair - network and proved that a space has - locally finite pair - networks if and only if it is cosmic space in 1986
    在此基础上, 1986年高智民引入了双网络( pair - network )的概念,证明了具有局部有限双网络的正则空间等价于cosmic空间。
  3. In other words , d . burke and r . engelking and d . lutzer proved that a regular space is metrizable space if and only if it has a - hereditarily closure - preserving base in 1975 , and introduced weakly hereditarily closure - preserving families , which proved that a regular k - space has - weakly hereditarily x closure - preserving bases is metrizable space , too
    Burke , r engelking和d lutzer证明了正则空间是可度量化空间当且仅当它具有遗传闭包保持基,并引入了弱遗传闭包保持集族( weaklyhereditarilyclosure - preservingfamilies ) ,同时证明了具有弱遗传闭包保持基的正则的k空间是可度量化空间。
  4. Yan pengfei proved that a space has point countable pair - networks if and only if it is cosmic space in 1999 further and put forword the question how we depict the space with - hereditarily closure - preserving pair - networks on the basis of acquirement of interested characteristics of the space with - hereditarily closure - preserving cs * - networks
    1999年燕鹏飞进一步证明了具有点可数双网络的正则空间也等价于cosmic空间,并在获得了具有遗传闭包保持cs ~ *双网络( cs ~ * - network )空间的有趣的内在特征之后提出问题:如何刻画具有遗传闭包保持双网络的正则空间
  5. The paper has four parts . the first chapter , introduction , gives the origin of the problems and our main results . the second chapter proves that countable paracompact ( mesocompact , metacompact ) spaces have the characterization of junnila ' s and that hereditarily mesocompact spaces do n ' t have it . at last , we give the sufficient conditions for a space having the property that its every scattered partition has a compact - finite open expansion
    第二章详细证明了可数仿紧(中紧、亚紧)空间有类似junnila的刻画,遗传中紧空间不具有类似junnila的刻画,最后给出了正则空间的每个散射分解有紧有限的开膨胀的充要条。

Related Words

  1. 则周
  2. 则正
  3. 英则
  4. 政则
  5. 能则
  6. 正则
  7. 献则
  8. 则心
  9. 则末
  10. 静则
  11. 正则开集
  12. 正则开子集
  13. 正则扩张
  14. 正则理想
PC Version

Copyright © 2018 WordTech Co.