×

椭球坐标系 meaning in Chinese

ellipsoidal coordinates

Examples

  1. The ellipsoidal coordinates are introduced to solve the unknown displacement and electric potential jumps in the integral equations under uniform loading
    引入椭球坐标系后,得到了均布载荷作用下未知位移间断和电势间断的解析解。
  2. It also roundly researched the solution of the helmholtz equation in the circumrotating ellipsoidal coordinates , and discussed how to calculate the solution of the electro - magnetic field in the circumrotating ellipsoidal coordinates using special functions , and researched circumrotating ellipsoidal cavity ’ s latent value and quality parameter using arithmetic simulation , finally we compared the ellipsoidal cavity with the spheriform cavity . the main content of this thesis are as following : 1 . calculated the distribution of the electro - magnetic field inside the ellipsoidal cavity based on maxwell equations and boundary conditions , and confirmed the syntonic mode inside the ellipsoidal cavity using arithmetic methods
    本文从maxwell方程及其边界条件求解出椭球腔内的电磁场分布,较为全面的研究了旋转椭球坐标系下赫姆霍兹方程的解的问题,讨论了用特殊函数来求解旋转椭球坐标系下电磁场的解,并通过数值仿真研究了旋转椭球谐振腔的本征值和品质因数,并和球形谐振腔做了比较,主要内容为: 1 .用maxwell方程及其边界条件求解出椭球腔内的电磁场分布,并且分析了椭球腔内的谐振模式。
  3. 2 . we present a solution to the scattering of gaussian beams by a concentric multilayered non - confocal spheroidal particle by taking a concentric two - layered one as an example . because the boundaries of these two layers are connected with two different spheroidal coordinate systems , firstly , the electromagnetic fields between the inner and outer boundaries are expanded in terms of the spheroidal vector wave functions with reference to these two systems , and the electromagnetic fields within the inner boundary with reference to the system for it
    2 .以双层椭球为例,我们提出了一种研究同心非共焦多层椭球粒子散射的方法,首先把两层椭球之间的电磁场用对应于两个椭球坐标系的椭球矢量波函数展开,这两个椭球坐标系分别与两层椭球的边界面相联系,在每层椭球边界面上分别应用边界条件,建立关于各展开系数的方程组。

Related Words

  1. 椭球
  2. 椭球镜
  3. 椭球函数
  4. 椭球粒
  5. 指数椭球
  6. 标准椭球
  7. 正常椭球
  8. 椭球算法
  9. 椭球参数
  10. 形象椭球
  11. 椭球状玄武岩
  12. 椭球坐标
  13. 椭头虫
  14. 椭性对合
PC Version

Copyright © 2018 WordTech Co.