×

李双代数 meaning in Chinese

lie bialgebra

Examples

  1. In chapter one we introduce lie bialgebriod and related conception , and special situation do detailedly
    本文的第一章介绍了李双代数胚及其相关的概念,并对一些特殊情形做了详尽的说明。
  2. Considered the relationship between the dirac structures of poisson - nijenhuis manifold and the basic vector field , we proof that the basic vector field can keep the dirac structures of poisson - nijenhuis manifold which discussed before
    考虑了基本向量场与dirac结构的关系,在前三节的基础上证明了基本向量场可以保持上述李双代数胚上的dirac结构。
  3. The content in chapter three is main of this paper . at the first all we try to discuss the lie algebroid morphism and lie bialgbroicl morphism whose operations are analyzed and discussed . on the basis of this we discuss pullback dirac structure for lie bialgebroid clearly
    第三章是本文的主体部分,首先引入了李代数胚态射和李双代数胚态射的概念,对其运算进行了分析和讨论,在此基础上对李双代数胚上的拉回dirac结构做了详细的讨论。
  4. The dirac stracture for lie bialgebroid ( a , a * ) is a subbundle l c a + a * , which is maximally isotropic with respect to symmetric bilinear form ( , ) + , whose section is closed under the bracket [ , ] . the dual characteristic pairs of maximal isotropic subbundle is an important conception which is used to describe maximal isotropic subbundle
    李双代数胚上的dirac结构是指在对称配对( , ) _ +下极大迷向,在[ , ]下可积的子丛,对偶特征对是描述极大迷向子丛的重要概念。
  5. With the if and only if condition of the condition when a maximally isotropic subbundle is a dirac structure , we particularly discuss some lie bialgebroids and its dirac structures in the section three . moreover , we get the similar conclusions and theorems . from these , we know more properties of poisson - nijenhuis manifold
    利用极大迷向子丛是dirac结构的充要条件,第三节详细讨论了poisson - nijenhuis流形上的几种李双代数胚及其上的dirac结构,并由此得到了一些poisson - nijenhuis流形上dirac结构的特殊性质。
More:   Next

Related Words

  1. 代数集刊
  2. 代数项
  3. 现代代数
  4. 代数多项式
  5. 代数语言学
  6. 结合代数
  7. 交错代数
  8. 代数偏差
  9. 顶点代数
  10. 地图代数
  11. 李双
  12. 李双成
  13. 李双江
  14. 李双良
PC Version

Copyright © 2018 WordTech Co.