李双代数 meaning in Chinese
lie bialgebra
Examples
- In chapter one we introduce lie bialgebriod and related conception , and special situation do detailedly
本文的第一章介绍了李双代数胚及其相关的概念,并对一些特殊情形做了详尽的说明。 - Considered the relationship between the dirac structures of poisson - nijenhuis manifold and the basic vector field , we proof that the basic vector field can keep the dirac structures of poisson - nijenhuis manifold which discussed before
考虑了基本向量场与dirac结构的关系,在前三节的基础上证明了基本向量场可以保持上述李双代数胚上的dirac结构。 - The content in chapter three is main of this paper . at the first all we try to discuss the lie algebroid morphism and lie bialgbroicl morphism whose operations are analyzed and discussed . on the basis of this we discuss pullback dirac structure for lie bialgebroid clearly
第三章是本文的主体部分,首先引入了李代数胚态射和李双代数胚态射的概念,对其运算进行了分析和讨论,在此基础上对李双代数胚上的拉回dirac结构做了详细的讨论。 - The dirac stracture for lie bialgebroid ( a , a * ) is a subbundle l c a + a * , which is maximally isotropic with respect to symmetric bilinear form ( , ) + , whose section is closed under the bracket [ , ] . the dual characteristic pairs of maximal isotropic subbundle is an important conception which is used to describe maximal isotropic subbundle
李双代数胚上的dirac结构是指在对称配对( , ) _ +下极大迷向,在[ , ]下可积的子丛,对偶特征对是描述极大迷向子丛的重要概念。 - With the if and only if condition of the condition when a maximally isotropic subbundle is a dirac structure , we particularly discuss some lie bialgebroids and its dirac structures in the section three . moreover , we get the similar conclusions and theorems . from these , we know more properties of poisson - nijenhuis manifold
利用极大迷向子丛是dirac结构的充要条件,第三节详细讨论了poisson - nijenhuis流形上的几种李双代数胚及其上的dirac结构,并由此得到了一些poisson - nijenhuis流形上dirac结构的特殊性质。