最优阶 meaning in Chinese
optimal order
Examples
- Under a prior graded meshes , the quasi - optimal order error estimates in the - weighted h ^ 1 - norm uniformly are proved
在先验分层网格剖分基础上,在-加权h ^ 1 -模意义下得到了拟最优阶一致收敛的误差估计。 - The characteristic finite element method is used to simulate compressible navier - stokes equations . numerical analysis shows that this method is stable and its errorestimates are optimal
摘要讨论了二维或三维可压缩n - s方程的特征有限元方法数值模拟,严格的理论分析表明这种方法是稳定的,并且具有最优阶误差估计。 - Its biquadratic finite element approximation is considered and under the appropriately graded meshes , quasi - optimal order error estimates in the - weighted h ^ 1 - norm , up to a logarithmic factor in the singular perturbation parameter , are proved
然后,考虑此方程在分层网格剖分上的双二次有限元逼近,在-加权h ^ 1 -模意义下得到了至多相差一个关于摄动参数对数因子的拟最优阶收敛的误差估计。 - In chapter two , we consider full disceret scheme of mixed finite element methods for the following initial - value problems of linear integro - differential equations of parabolic in this chapter , we give the error analysis of this full discrete scheme and get optimal error estimates for the discrete solutions of u and p
第二章讨论下述线性抛物型积分微分方程初边值问题混合有限元方法的后差全离散格式。给出了该全离散格式的误差分析,得到了离散解逼近未知函数u以及伴随速度p的关于空间和时间的最优阶误差估计。