×

曲线生成 meaning in Chinese

curve generation

Examples

  1. As an application of the algorithm and the properties , some examples are given
    作为对曲线生成算法和性质以及插值方法的应用,最后给出了一些图形实例。
  2. The paper expounds the algorithms of generating quadratic curve . using quadratic curve and cubic bezier curve enforces the smooth of curves
    论文阐述了几种二次曲线生成算法;说明如何应用二次曲线和三次bezier曲线拟合改善曲线的光滑性。
  3. The thesis also explains how to design the function models , ( such as communication model , curve building model and control arithmetic model etc . ) in the software of the controller . the method of corresponding these models was also illuminated
    阐述了adcm控制器的软件设计;阐述了各个功能模块(如通讯模块、曲线生成模块、控制算法模块等)的实现及它们之间协调工作的方法。
  4. Since pixel - level contrapose pixel coordinate , trigonometric function must be used to translate polar coordinates to pixel coordinate when the curve is described by polar coordinate . so research is very little on algorithms for generating this sort of curve by now
    由于逐点是针对象素坐标系而言,而对极坐标系下描述的曲线,在转换到象素坐标系时要用到三角函数运算,因此目前很少提到对极坐标曲线生成算法的研究。
  5. Paper [ 76 ] provides a integer algorithm for rasterizing free curves , we need change the curve form to implicit function form , then use curve ' s positive - negative property to draw , but we ca n ' t use this algorithm when curve ' s degree is higher than 3 and this algorithm ca n ' t avoid using multiplication ; paper [ 77 ] provides a new generating algorithm , this algorithm can draw bezier very well , but for b - spline curve , we need use convert them into bernstein base form . because this process spends a lot of time , this algorithm has not a good speed and effect for rendering rational b - spline curve
    现在经常采用的算法也是基于几何的算法(即线式生成算法)和基于像素的算法(点式生成算法) ;文献78 ]提供了一种有理参数曲线的快速逐点生成算法,该算法对有理b吮ier曲线的绘制,能起到很好的作用,但是对于有理b样条曲线,必须先通过多项式的代数基与bemstein基间的变换矩阵,把原式用bemstein基表示,这一过程由于计算量大,降低了曲线生成的速度和效率
More:   Next

Related Words

  1. 毛皮生成
  2. 净生成
  3. 测试生成
  4. 宏命令生成
  5. 生成细胞
  6. 结垢生成
  7. 胆红素生成
  8. 生成语义学
  9. 纤维蛋白生成
  10. 生成模式
  11. 曲线设定
  12. 曲线设计
  13. 曲线省
  14. 曲线式
PC Version

Copyright © 2018 WordTech Co.