×

无限集 meaning in Chinese

infinite set

Examples

  1. This idempotent ultrafilter enables us to find an appropriate infinite set .
    这个幂等的超滤子能使我们找到一个适当的无限集
  2. Countably infinite set
    可数无限集
  3. 2004 with new york film & tv production and uswtv . com , produced a tv series ( with its length unlimited ) our life in u . s . which reflects the true life of immigrates living in the united states
    2004年在美国纽约影业公司,纽约世界网络电视台拍摄无限集系列电视片《我们的美国生活》 ,反映世界各国移民在美国的真实生活。
  4. When / is infinite and 6 is a compact element and with an irredundant finite join - decomposition , it is showed that a sufficient and necessary condition that the solution set is nonempty . it is also proved that there exists a minimal solution if the solution set of the equation sup t ( ai , xi ) = b is nonempty
    当论域为无限集, b为紧元且有不可约有限并分解时,给出了解集非空的充要条件,证明了如果方程sup _ ( i i ) ( a _ i , x _ i ) = b有解,则一定存在极小解。
  5. In the case of infinite domains , it is proven that there exists a maximal solution x " of a @ x = b such that x * x for every solution x of a @ x = b if the solution set of a @ x = b is unempty and b has an irredundant completely meet - irreducible decomposition . it is also identified that there exists a maximal solution x * of a @ x = b such that x * x for every solution x of a @ x = b if the solution set of a @ x = bis unempty and every component of b is dual - compact and has an irredundant finite - decomposition . in the end , a necssary and sufficient condition that there exists a maximal solution x * of a @ x = bsuch that x * x for every solution x of a @ x = b is given when the solution set of a @ x = b is unempty
    当论域为无限集时,证明了如果方程a @ x = b有解且b有不可约完全交既分解,则对方程a @ x = b的每一个解至少存在一个大于等于它的极大解;进一步证明了如果方程a @ x = b有解且b的每一个分量为对偶紧元并有不可约有限交分解,则对方程a @ x = b的每一个解存在一个大于等于它的极大解;最后给出了对方程a @ x = b的每一个解存在一个大于等于它的极大解的一个充要条件及[ 0 , 1 ]格上方程a @ x = b的解集中存在极大解的一个充要条件。

Related Words

  1. 无限线
  2. 无限平面
  3. 无限光阴
  4. 无限计数器
  5. 无限重复
  6. 无限地带
  7. 无限责任
  8. 无限惆怅
  9. 无限螺旋
  10. 无限物
  11. 无限基数
  12. 无限积分剂量
  13. 无限集合
  14. 无限集环
PC Version

Copyright © 2018 WordTech Co.