×

微分性质 meaning in Chinese

differentiation property

Examples

  1. The lineshape analysis of electric field modulation spectroscopy of semiconductor quantum dots
    半导体量子点电调制吸收谱一次微分性质的理论分析
  2. A method is used to approximate several differential properties , including mean curvature , guassian curvature and main curvature on scattered - point - sampled surfaces
    摘要提出一种直接在散乱数据点云上计算曲面的局部微分性质,包括平均曲率、高斯曲率和主曲率。
  3. In the case of same local observation clutter power , based on the fusion rule proposed in [ 391 , a novel method is proposed to solve the distributed system included any kind of lds by the property of laplace transform . this method overcomes the shortcoming of supposing the same local snr in other method . by computer simulation , some available conclusions are found based on these results
    在假设局部观测杂波功率水平相同的条件下,针对文献[ 39 ]提出的融合方案,利用laplace变换的频域微分性质,提出了一种针对局部采用任意数量的不同cfar检测器时系统的检测概率和虚警概率关于固定门限的求取方法,克服了以往需要假设局部信杂比相同的缺憾。
  4. In the case of same clutter power in lds , based on the fusion rule proposed in [ 171 ] , a novel method is proposed to solve the distributed system included any kind of lds by the property of laplace transform . this method overcomes the shortcoming of supposing the same local snr in other method
    在局部传感器杂波功率水平相同情况下,针对文献[ 171 ]中提出的融合方案,利用laplace变换的频域微分性质,提出了一种针对局部采用不同cfar检测器时系统的检测概率和虚警概率关于固定门限的求取方法,并克服了以往需要假设局部信杂比相同的缺憾。
  5. In section 1 , we first present our argument that the purpose of optimization is to search for the maximum value of a function . the major researches and recent development of the study of non - smooth analysis are reviewed . also included in this section is our discussion of the theoretical importance and wide practical prospects in studying differential properties of a lipschitz function
    第一节是引言部分,提出了最优化问题的实质是在给定条件下求一函数的极值点;简述了非光滑分析的主要研究内容及其发展进程;指出研究lipschitz函数的微分性质,具有深刻的理论意义和广泛的实用前景。

Related Words

  1. 微分节
  2. 微分容量
  3. 迁移微分
  4. 微分曲线
  5. 求微分
  6. 弱微分
  7. 机械微分
  8. 微分运算器
  9. 微分调制
  10. 微分布
  11. 微分形式的交错微分
  12. 微分形式论
  13. 微分选择器
  14. 微分学
PC Version

Copyright © 2018 WordTech Co.