×

异速生长 meaning in Chinese

allomet ry
allometric growth
allometry relative growth
heterauxesis
heterogenic growth
heterogony

Examples

  1. The law of allometric growth and theoretical foundation of several suburbanization models
    异速生长定律与城市郊区化的分维刻画
  2. Urban system ; urbanization ; allometric growth ; fractal dimension ; henan cities of china
    城市体系城镇化异速生长分维河南城市
  3. The spatial complexity of the law of allometric growth and urban population density
    城市密度分布与异速生长定律的空间复杂性探讨
  4. Researches in models of allometric analysis of urban systems and forecast of urbanization level based on rs data of urban area
    基于rs数据的城市系统异速生长分析和城镇化水平预测模型:基本理论与应用方法
  5. All the contents are developed around a set of scaling laws taking the form of exponentials which relate to almost all the issues of complexity including fractals , chaos , strange attractors , localization , and symmetry breaking , etc . the main work can be summarized as follows : starting from the law of allmetric growth three fractal dimensions in a broad sense are derived , and according to these dimensions , geographical space is divided into three levels , i . e . , real space , phase space , and order space , each of which corresponds to a kind of dimension . based on the idea of spatial disaggregation and using the rmi ( relationship - mapping - reversion ) principle , the urban system is formulated as three scaling laws of the three spaces , including number law , size law , and area law , which can be transformed into a set of power laws such as allometric law and zipf ’ s law associated with fractal structure
    异速生长律的纵向、横向和切向三个角度将地理空间划分为实空间、相空间和序空间,分别对应于空间系列、时间序列和等级序列三个层面,每个层面的测度各有自己的空间维度。基于“空间循环细分-等级体系-网络结构”的数理等价关系,利用rmi (关系-映射-反演)原则,成功地实现了城市系统宏观模型的理论抽象,将空间复杂性问题表征为简单的指数式标度定律(包括数量律、规模律和尺度律) ,这一组标度律可以与一组幂次定律(包括具有分形性质的规模-数目律、异速生长定律和三参数zipf定律)互为变换。
More:   Next

Related Words

  1. 速生
  2. 速生植被
  3. 速生树
  4. 速生属
  5. 速生人工林
  6. 速生树种
  7. 速生木材
  8. 速生种
  9. 速生植物
  10. 速生品种
  11. 异速辊筒
  12. 异速进化
  13. 异速生长测定法
  14. 异速生长的
PC Version

Copyright © 2018 WordTech Co.