局部误差 meaning in Chinese
local error
localized error
ror
Examples
- Local error estimate for method of operator splitting for convection - diffusion equations
扩散方程算子分裂方法的局部误差估计 - Using afem based on local error estimation , we can give relevant mesh on different frequency phase with required precision
而基于局部误差估计的自适应有限元法在不同的求解频率段,根据计算精度的要求,采用相应的网格划分。 - Recently , yamashita and fukushima [ 4 ] show that the sequence produced by the levenberg - marquardt method converges quadraticlly to the solution set of the equations , if the parameter is chosen as the quadratic norm of the function and under the weaker condition than the nonsingularity that the function provides a local error bound near the solution . however , the quadratic term has some unsatisfactory properties
最近yamashita & fukushima [ 4 ]提出,在弱于非奇异性条件的局部误差界条件下,如果选取的迭代参数为当前迭代点处函数值模的平方,则levenberg - marquardt方法产生的迭代点列二阶收敛于方程组的解集。 - In practice , it ’ s very hard to find any ideal scatter points to track , so this thesis focuses on the motion compensation algorithm base on motion parameters estimation , which is used in r - d fft imaging algorithm and verified by simulation . work of this thesis contains : first analyze the signal - processing model of isar system in detail , and establish a 3 - dimensional mathematical scattering model of moving target . then some improvements are made on existing compensation algorithm , to get a higher image quality and reduce compute burden
本论文有以下几点创新: 1 .在距离向的补偿(包络对齐)方面,采用基准相关法代替相邻相关法或积累相关法,一定程度上解决了可能出现的包络漂移和包络突跳现象;根据目标运动轨迹特点,采用二次曲线拟合的方法,将包络对齐时的局部误差转化为全局的误差,以便实现较优的整体对齐效果。 - Here we consider the choice of the parameter as the norm of the gratitude of the function . we prove under the local error bound condition that the levenberg - marquardt method with this parameter converges quadraticlly to a solution of the system of the equations . and we also present two globally convergent levenberg - marquardt algorithms using line search techniques and trust region approach respectively
我们提出选取迭代参数为当前迭代点处函数梯度的模,在局部误差界条件下, levenberg - marquardt方法依然具有二阶收敛性,并考虑了线搜索和信赖域技巧的levenberg - marquardt方法,分析了其全局收敛性。