多光谱影像 meaning in Chinese
multispectral image br>
Examples
- Fusion of remote sensing images - the fusion of spot panchromatic and multispectral images
全色波段和多光谱影像的融合 - Investigation of image fusion between high resolution image and multi - spectral image
高空间分辨率影像和多光谱影像融合的研究 - The theoretical basis of complex wavelet is described together with its key properties ; a new method for fusing remote sensing images based on complex wavelet is proposed
摘要提出了一种基于复数小波变换的影像融合新算法,用以融合全色影像和多光谱影像。 - After presenting a set of indexes for fusion quality assessment , different fusion algorithms have been applied to three couples of images : jers - 1 sar image with tm image ; ers - 2 sar image with tm image ; spot - 5 panchromatic image with tm image . with the fusion results been evaluated and compared by the quality assessment indexes presented in this paper , some conclusions have been drawn : ( 1 ) for the fusion of sar image and tm image , compared with the traditional algorithms , the new algorithm based on wavelet transform retains sar image ' s texture and structural information well , and its ability to preserve tm image ' s spectral information is far better than other algorithms ; ( 2 )
利用评价指标体系对各种融合结果进行了评价和比较,结果表明: ( 1 )对于sar图像与tm多光谱影像融合,与传统的融合方法相比,小波融合方法不仅能很好地保持sar图像的纹理、结构信息,而且在tm光谱特征保持方面优势明显; ( 2 )小波融合方法可以根据不同应用要求选取不同的小波基和小波变换分解层数,从而调整融合结果中sar图像信息和tm信息的分配,使用十分灵活; ( 3 )对三种不同影像间的融合都取得了很好的效果,表明小波融合方法对不同数据的适应性很强。 - In addition , on the basis of rgb - ihs and principle component analysis , this paper carries out a multi - spectral image merge experiment of cbers - 01 with aster , tm and spot , then makes a comparison on cbers - 01 and tm from the information of brightness , texture and edge , and macro characteristics
基于rgb - ihs变换和主成分变换模式,将cbers - 01与aster 、 tm 、 spot等数据进行多光谱影像融合实验。另外,展开cbers - 01与tm在灰度信息、纹理信息、边缘信息及宏观特点等方面的对比研究。