加权空间 meaning in Chinese
weighted spaces
Examples
- For the travelling waves ( al ) and ( a2 ) , we consider the distribution of spectra for the linearized operator in some weighted spaces
对行波( a1 )和( a2 ) ,我们在加权空间考虑线性化算子的谱分布情况。 - By introducing weighted space and using the method of priori estimatehe , uniformly compactness are achieved for s ( t ) in weighted space to overcome the noncom - pactness of the classical sobolev embedding in unbounded domain
在加权空间进行先验估计,获得解算子s ( t )在加权空间紧的有界吸收集,从而在加权空间得到整体吸引子的存在性。 - We get the estimates of the upper bounds of hausdorff and fractal dimensions for the global attractors . in section 5 . 3 , the cauchy problem is studied , by using the weighted function space and the interpolating inequality , the existence of the global attractors for the damped generalized coupled nonlinear wave equations in an unbounded domain is proved . in section 5 . 4 , the time periodic solution problem of damped generalized coupled nonlinear wave equations with periodic boundary conditions is studied , the existence of time periodic soluation of this problem is proved by using the convergence of approximate time periodic solution sequences
第五章,考虑了一类广义耦合的非线性波动方程组,在第二节中讨论了周期初值问题,证明了整体光滑解的存在性和唯一性,得到了整体吸引子,给出了hausdorff维数和分形维数的上界估计;在第三节中讨论了cauchy问题,利用加权函数和加权空间的插值不等式,证明了无界区域上整体吸引子的存在性;在第四节中证明了时间周期解的存在性。 - Chapter 6 , consider a coupled generalized kdv - burgers equation . in section 6 . 2 , we study the initial - boundary value problem in the semi - unbounded domain , the existence of global solutions and global attractors is proved by means of a uniform priori estimate for time . in section 6 . 3 , the cauchy problem by using the weighted space , the existence of the global attractors for a coupled generalized kdv - burgers in an semi - unbounded domain is proved
第六章,考虑了一类广义耦合的kdv - burgers方程,在第二节中讨论了半无界区域上的初边值问题,证明了整体光滑解和整体吸引子的存在性;在第三节中讨论了cauchy问题,利用加权函数和加权空间上的插值8不等式,证明了半无界区域上整体吸引子的存在性。 - By choosing some appropriate exponential weight functions we prove that the essential spectra and the eigenvalues ( except the simple zero eigenvalue ) have negative real parts , thus we get the locally asymptotically exponential stability of travelling waves ( al ) and ( a2 ) in some weighted spaces
通过选用合适的权函数,我们证得在加权空间线性化算子的本质谱和除简单特征值零以外的特征值均具有负实部。因此,我们得到行波( a1 ) , ( a2 )在加权的l ~ 2 ( r )空间的局部渐近指数稳定。