初始函数 meaning in Chinese
initial function
Examples
- In this paper , we study the dynamics of a two - neuron feed - back network model with two thresholds . we show that its equilibrium solution is converge for the prescribed limit threshold value
摘要研究一类具时滞和非连续型信号函数的双阈值二元神经网络模型解的渐近性,在一定的初始函数空间内,对信号函数阈值的一些不同取值范围,证明了其解的收敛性。 - In this paper , we consider the stability of the positive radical steady states , which are positive solutions of of the following cauchy problem : where initial function 0 is a bounded non - negative continuous function in rn , and k ( r ) > crl for some l > - 2 and r large
本文讨论了如下的柯西问题的正径向平衡解的稳定性,其中初始函数是r ~ n中不恒为零的有界非负连续函数, k ( r ) cr ~ l ( l - 2 , r足够大) 。这个问题的正径向平衡解是的正解。 - In the third chapter , we will study the existence and uniqueness of the classical global solution and generalized global solution to the periodic boundary value problem and the cauchy problem for this kind of equation . in the second chapter , we study the following nonlinear wave equation of higher order : with the initial boundary value conditions or with where a1 , a2 , a3 > 0 are constants , ( s ) , f ( s0 , s1 , s2 s3 , s4 ) are given nonlin - ear functions , u0 ( x ) and , u1 ( x ) are given initial functions . for this purpose , by green ' s function of a boundary value problem for a fourth order ordinary differential equation we first reduce the problem ( 1 ) - ( 3 ) to an equivalent intergral equation , then making use of the contraction mapping principle we prove the existence and uniqueness of the local classical solution for the intergral equation
本文分三章,第一章为引言;第二章研究一类非线性高阶波动方程的初边值问题的整体古典解的存在性和唯一性,以及古典解的爆破;第三章研究此方程的周期边界问题和cauchy问题的整体广义解和整体古典解的存在性和唯一性,具体情况如下:在第二章中,我们研究一类非线性高阶波动方程的如下初边值问题:或或其中a _ 1 , a _ 2 , a _ 3 0为常数, ( s ) , ( s _ 0 , s _ 1 , s _ 2 , s _ 3 , s _ 4 , )为已知的非线性函数, u _ 0 ( x ) , u _ 1 , ( x )为已知的初始函数,为此,我们先用四阶常微分方程边值问题的green函数把上述问题转化为等价的积分方程,然后利用压缩映射原理证明此积分方程局部古典解的存在性和唯一性,又用解的延拓法证明上述问题整体古典解的存在性和唯一性,主要结果有:定理1设u _ 0 ( x ) , u _ 1 ( x ) c ~ 4 [ 0 , 1 ]且满足边界条件( 2 ) ,若以下条件满足:其中a , b月0为常数, w