×

分类定理 meaning in Chinese

classification theorem

Examples

  1. In chapter iv , we illustrate number systems of system i - xii , which give a further proof to the theorem on the structure of the system and 121 kinds of global phase portraits
    第四章对系统l系统12的全局结构进行了数字系统举例,进一步以实例验证了双扇形区域分类定理及系统的全局拓扑结构
  2. Due to the limitation of the length of this article , we only offer 24 examples . on the basis of results in previous chapters , we get the sufficient and necessary conditions for the structural stability of the system
    根据第一章中的引理、第二章中系统代数分类的思想及第三章中双扇形区域分类定理,我们在第五章得到了系统结构稳定性的充要条件
  3. Then according to the lemmas in chapter i , we get two lemmas called lemma 3 . 1 , lemma 3 . 2 , and one theorem on the structure of the system . the system ( 0 . 1 ) has and only has 6 topological different double sector regions , which constitute the phase portait of the system
    其中双扇形区域分类定理大意为系统( 0l )有且仅有6种不同双扇形区域分类,系统的每一种全局拓扑结构对应于不同的双扇形区域序列
  4. So r0 operator and godel operator are united in the systems ha the negation - a with respect to parameter a is defined in ha , the many - valued system h1 / 2 = ( [ 0 , 1 ] - 1 / 2 , 1 / 2 ) is discussed in detail . the classification theorem of tautologies in f ( s ) is obtained in h1 / 2 . the classfication of tautologies is defined on hq
    本文还在h _系统中引入了带参数的非运算,较细致地研究了多值系统的子代数理论,以为赋值域建立了f ( s )中重言式的分类定理,并将广义重言式分类定理推广到系统h _ ( 0 1 )中。
  5. In the second part , a class of left - continuous isomorphic to r0 t - norm are given . the concept of isomorphism among implication operators is introduced and it is proved that two implication operators are isomorphic if and only if the two t - norms residuated to them respectively are isomorphic . moreover , modifications of classes of a - tautologies under isomorphisms are investigated
    紧接着,引入了蕴涵算子同构的概念,并对伴随情况下t -模同构与蕴涵算子同构之间的关系进行了讨论,初步研究了同构的蕴涵算子对-重言式类的影响,得到了关于系统的广义重言式分类定理

Related Words

  1. 中点定理
  2. 畸变定理
  3. 卸载定理
  4. 等价定理
  5. 表象定理
  6. 惯性定理
  7. 多方定理
  8. 凸定理
  9. 正确性定理
  10. 反定理
  11. 分类调查
  12. 分类定货, 集体定货
  13. 分类定义
  14. 分类定义相
PC Version

Copyright © 2018 WordTech Co.