分布收敛 meaning in Chinese
konvergenz in verteilung convergence in distribution
Examples
- Through almost sure convergence of random variables , the probability convergence can be derived ; and further the weak convergence can be derived
摘要由随机变量序列几乎处处收敛可推出其依概率收敛,进而可推出其依分布收敛,可见判别几乎处处收敛的重要性。 - This paper gaves its equivalent propositions and proves that a . s . convergence of independent random variables ' s sum variables is equivalent to its probability convergence , and equivalent to its weak convergence
给出了它的几个等价命题,同时还证明了独立随机变量和序列几乎处处收敛等价于依概率收敛,亦等价于依分布收敛。 - Furthermore , the equivalent judge condition between almost sure convergence and convergence in distribution of the extreme value distribution of 1 - max style is , in this thesis , given in the case of independedt nonidentical distribution
此外,本文还给出了独立不同分布情况下l - max型极值分布几乎处处收敛和依分布收敛等价的判断条件。 - It comes up with a new notion , d - solution , which is applied to the distance estimation , by virtue of hilbert space ; furthermore , the dissertation has gained a necessary condition which is identity of minimum mean - square value in linear function classes , so that d - solution extends minimum mean - square value within the domain of nonlinear function equation or equation system ; and , the dissertation studies in detail the classical moment estimation and maximal likelihood estimation on the parameters of ar ( p ) , a series of theorems in the estimation section shows the moment estimators are consistent on the ground of large samples jikewise , those distribution functions of the estimated parameters accord to maximum likelihood estimation converge gauss distribution if the white noise is gaussan
首先,借助hilbert空间理论,提出了距离估计的d -解,给出了d -解的必要条件,这个条件在线性函数类里即是极小二乘估计法, d -解的必要条件满足的方程实质上将极小二乘估计法推广到多函数及非线性函数类。再而,详细地研究了多元弱平稳序列自回归模型ar ( p )的参数经典的矩的替代估计和极大似然估计,获得矩的替代估计的一致性的结果。对基于gauss白噪声假设多元弱平稳序列自回归模型的均值、白噪声的协方差阵的极大似然估计都有依分布收敛到多元正态分布的统计性质。