×

似然准则 meaning in Chinese

likelihood criterion

Examples

  1. While the method in this paper is based on maximum likelihood criterion , which ensures accuracy of signal receiving
    而本文的方法是基于最大似然准则的,确保信号接收准确。
  2. Generativ models such as hidden markov models and gaussian mixture models have been proved to be an efficient way for statistically modeling sequence signals . and the support vector machines seem to be a promising candidate to perform the classification task
    在说话人识别问题上,虽然原有的马尔可夫模型和高斯混合模型具有良好的时间规整能力,但是,受极大似然准则的限制,他们的类别区分能力较弱。
  3. Then , we propose our way of voxel - based multi - modal image registration on the strong theory base . we compare the traditional maximum likelihood metric and the new mutual information metric and find the new metric is the farther development of the traditional metric
    在模型的基础上,我们分析比较了传统的最大似然准则和基于统计信息理论的互信息准则,指出互信息准则实际上是对最大似然方法的拓展,是一种更为合理的配准原则。
  4. Firstly , e - hmm is used to parameterize face image , the output likelihood of the e - hmm is encoded to form the input vector and is sent to the ann . by taking advantage of the discriminative training of ann , the weak discrimination of the maximum likelihood criterion can be improved , and the recognition performance can be improved by means of the learning ability of ann
    该混合识别网络用e - hmm的参数来描述人脸的整体性和局部细节性特征,用e - hmm的输出似然值序列组成ann的输入矢量,利用ann的鉴别训练能力来克服e - hmm的基于最大似然准则训练算法区分力较差的弱点,同时利用ann的学习能力来提高e hmm的识别性能。
  5. The optimum multiuser detection can obtain the best bit error rate theoretice . but its computing complexity increases with the number of users exponentially and belongs to np maturity problem . so much research fasten on the multiuser detection with low computing complexity . cdma multiuser detection is in fact a combination optimize problem
    基于最大似然准则的最佳多用户检测器在理论上可以获得最小的误码率,提供最佳的检测性能,但其计算复杂度随用户数呈指数增长,属于np完备问题,因此大量的研究集中于发展计算复杂度较低的次最佳多用户检测器,使其具有合理的计算复杂度。

Related Words

  1. 无因次准则
  2. 孜然芹枯茗
  3. 似流体
  4. 似动
  5. 似和
  6. 似大理石
  7. 似稳
  8. 似纺锤
  9. 似曾
  10. 似然性比率评准
  11. 似然性准则
  12. 似燃
  13. 似人的生物
PC Version

Copyright © 2018 WordTech Co.