×

任务图 meaning in Chinese

artifact
task image

Examples

  1. Proposed a duplication based task scheduling algorithm with communication limits for general task graph , tdmscl
    给出针对普通任务图带通信限制的基于复制调度算法tdmscl 。
  2. The paper presented task graph clustering algorithm , system graph clustering algorithm and mapping algorithm respectively , as well as their applications
    文中分别给出了任务图的分簇算法,系统图的分簇算法和映射算法及实例。
  3. It converts the ordinary task graph into fork and join graph , then apply the optimized result of fork and join graph to the scheduling of general task graph . tdmscl converts task scheduling process into the process of optimizing a topological sequence
    该算法把普通任务图转换为join与fork等基本形状,然后运用对join图与fork图的优化调度研究结果对这些基本形状进行任务调度。
  4. Theoretical proof and simulation suggests that this constructive function has stronger heuristic power , and has better effectiveness for scheduling dag a task - replication based heuristic static scheduling algorithm is also proposed ( namely processor pre - allocation algorithm for dag tasks , ppa ) , utilizing the aforementioned heuristic function aimed at rtrpmt
    通过理论证明与模拟实验表明:本文构造的启发函数具有较强的启发能力,对dag图的调度具有较优的效果。利用本文所构造的启发函数,针对相关周期性多任务,提出了一种基于任务复制的启发式静态调度算法( dag任务图的处理器预分配算法ppa ) 。
  5. Finally it describes a new network task scheduling algorithm which considers both throughput and latency . the contributions of this paper are as below : proposed a new duplication based task scheduling algorithm for fork - join graph considering the communication limits between different processors , named tdc _ fj . the test results show that tdc _ fj is flexible and effective for fork - join graph and it achieves good performance and reduces the requirements of processors
    本文主要贡献如下:提出了满足通信限制的基于复制的优化fork - join调度算法tdc _ fj , tdc _ fj利用基于复制的fork - join最优化调度结果来对fork - join任务图进行调度,并且在调度过程中加入处理器之间的通信限制,也就是一条通信信道不能同时被两个通信事件占用。

Related Words

  1. 任务因子
  2. 游戏任务
  3. 任务排队
  4. 并行任务
  5. 快速任务
  6. 任务营销
  7. 神秘任务
  8. 秩任务
  9. 迷惑任务
  10. 任务变量
  11. 任务同步化
  12. 任务同一性
  13. 任务图象
  14. 任务团队
PC Version

Copyright © 2018 WordTech Co.