一阶摄动 meaning in Chinese
first order perturbation
Examples
- It is pointed out that the results identified by the 1st order perturbed identification method can satisfy the demand for engineering accuracy
指出一阶摄动识别的结果可以满足工程实际的精度要求。 - Based on the first order perturbing solutions , the thesis obtained the long term relative perturbation of equal semi - major axis formation , which is removed by adjusting semi - major axis of the flying - around satellite
接着,基于一阶摄动解,得出了等半长轴绕飞编队的长期相对摄动规律,并通过调整环绕卫星的半长轴消除了长期相对摄动。 - In this case , we give the formulas to caiculate first - to third - order perturbation coefficients of the eigenvalues and first - to second - order perturbation coefficients of the eigenvectors . 1n second case where the eigenprobiem for the first - order perturbation coefficients of a defective eigenvalue hajs repeated eigenvalues , we give the formulas to calculate the first - to third - order perturbation coefficients of the eigenvalues and first order perturbation coefficients of the eigenvectors . the third case is an extension of the first case , where one of the first - order perturbation coefficients of the eigenvalues associated with the lowest - order jordan blocks is zero
第一种情形是特征值一阶摄动系数都不相同,在这种情形下,我们给出了计算特征值1到3阶摄动系数以及计算特征向量1到2阶摄动系数的计算公式;第二种情形是特征值一阶摄动系数有相等的情形,在这种情形下,我们给出了计算特征值1到3阶摄动系数以及计算特征向量1阶摄动系数的计算公式;第三种情形是第一种情形的扩展,此时对应于最低阶jordan块的特征值一阶摄动系数有一个是零。 - The first - order perturbation method correct for forcing decoupling method based on perturbation theory is put forward to decrease error ; iii . the complex modal method is introduced into analysis of non - classical damping systems to eliminate error of forcing decoupling method , and improve the complex modal response spectrum , which can apply to design of non - classical damping systems ; iv . for exerting the energy dissipation capability of each device , a two - step optimum method , whose controlling function is extremum expectation of interbedded displacement , is put forward to optimize the number and position of device ; v . the problem of iterative method applied to analyze energy dissipation systems is indicate , and give some primary advice based on pilot study
为改善上述缺点,本文进行了以下的研究工作:在忽略耗能器附加质量的基础上,推导出适用于耗能减震结构的摄动法,减少振型分解法在迭代计算过程中的工作量,加快计算速度;针对运动方程的强行解耦所产生的误差,根据摄动法原理,对其进行一阶摄动修正;为消除强行解耦振型分解法用于非比例阻尼结构分析时产生的误差,引入状态空间对系统进行复模态分析,并改进了基于复模态理论的、适用于非比例阻尼结构设计的双反应谱方法;对于耗能器的数量和位置优化进行了一些探讨和研究。