reparametrization meaning in Chinese
再参量化
Examples
- The applied value of the theory of bbc curves and surfaces lies in that it can help realize the reparametrization of
7 ) bsc和bbc曲线曲面理论在机械零部件设计和加工中的应用 - This thesis also presents an explicit formula that converts a triangular sbgb patch of degree n to a degenerate rectangular sbgb patch of degree nxn by reparametrization and the sbgb dual bases
利用sbgb型基函数的对偶泛函,推导出sbgb三角曲面片到退化矩形曲面片的顶点转化公式。 - We can conclude that the bsc representation of curves and surfaces is the generalized form of basic spline curves and surfaces . the theory of bsc curves and surfaces can be applied to solve the reparametrization problem of basic spline curves and surfaces
结果表明,附权bbc曲线曲面是b虹ier曲线曲面的椎广形式,它在对b6zier曲线曲面进行重新参数化方面具有很高的应用价值。 - Firstly , by means of the reparametrization of basic spline basis functions , the basic spline class is established and its properties are discussed . secondly , the bsc form of curves and surfaces are derived and the generating algorithms are investigated . thirdly , the relation between basic spline curves and surfaces and their bsc forms is obtained
这一部分提出了bernstein函数类和bbc函数的概念,讨论了它们的性质,在此基础上研究了bbc曲线曲面,从理论上给出了同一条b zier曲线或同一张b zier曲面的无数种不同的表达形式,同时讨论了它们之间的区别与联系;进一步论述了b zier曲线曲面和bbc曲线曲面以及有理b6zier曲线曲面和附权bbc曲线曲面的联系,与bbc曲线曲面有关的算法也有详细的描述。 - Some important problems will be mainly discussed in this paper , including : the formation and representation of bsc , bbc , tbsc , tbbc curves and surfaces , some significant properties and corresponding algorithm , the expression of normal curves and surfaces in the form of bsc , bbc , tbsc , tbbc , the methods of the reparametrization of curves and surfaces based on the theory of bsc , bbc , tbsc , tbbc curves and surfaces , the application of the theory of bsc , bbc , tbsc , tbbc curves and surfaces in the reparametrization of curves and surfaces and practical modeling
3 )函数的概念,并建立了bsc 、 bbc和tbsc 、 tbbc曲线曲面的系统理论。主要研究bsc 、 bbc和tbsc 、 tbbc曲线曲面的构造、表示、性质,特征、算法;常用曲线曲面的bsc 、 bbc表示;基于bsc 、 bbc理论的曲线曲面的重新参数化方法; bsc 、 bbc理论在曲线曲面的重新参数化和实体造型中的应用。论文分为六个主要部分。