raviart meaning in Chinese
拉维亚尔特
Examples
- Rectangular crouzeix - raviart anisotropic finite element method for nonstationary stokes problem with moving grids
型各向异性非协调元变网格方法 - Furthermore , we also devise numerical experiments for crouziex - raviart element , which has not theoretical estimation yet
本文还对尚未得到理论结果的crouziex - raviart有限元进行了数值实验。 - As is guessed , crouziex - raviart element gives lower - bound approximation with second order precision and further extrapolation reaches fourth order precision
而crouziex - raviart非协调元则如预测,给出下逼近,具有2阶精度,外推可以获得4阶精度。 - First , we present the equivalent variatial formulations of the least - squares mixed method and prove the existence and uniques for the weak problems . on the basis of l2 - projections and raviart - thomas projections , we obtain the superconvergence of the least - squares mixed finite element approx - imations on uniform triangulations , where triangular mixed finite elements of the lowest order raviart - thomas spaces are used to approximate the flux p . in the second chapter , we briefly recall the standard and mixed finite methods for second order elliptic problems , and introduce a modified least - squares mixed method
作者首先导出了最小二乘混合元方法的等价变分形式,并且证明了变分问题广义解的存在唯一性;在此基础上,我们采用强一致三角形剖分,选取最低阶的raviar - thomas空间对未知函数的通量进行逼近,利用l ~ 2投影和raviart - thomas投影,得到了插值投影和最小二乘混合元解之间的超收敛结果。 - For nonstationary stokes problem , materials ' anisotropic character should be considered in a boundary layer or near the angular of the domain fj . at this time , the subdivision to region q is not of regularity or quasi - uniform and should be anisotropic grid , which can describle the facts exactly . crouzeix - raviart element and rotary q4 element are failed in anisotropic grid and many others either ca n ' t satisfy the anisotropic property or ca n ' t be used to the moving grid finite element method . it ' s proved that five nodals element presented by professor houde han can overcome this shortcoming
常用crouzeix - raviart元和旋转q _ 4元由于不能满足各向异性插值特征而失去效用。而其它许多单元或是不满足各向异性插值特征或是尚不能直接应用于stokes方程变网格有限元。经本文证明由韩厚德教授提出的五节点单元很好地解决了这一矛盾,这些结论以前是没有人作过的。