nonlinearized meaning in Chinese
非线性化的
Examples
- Three eigenvalue problems associated with the same isospectral evolution equation are proposed . the corresponding nonlinearized eigenvalue problems and their relations are studied by the reduction procedure
摘要通过约化理论,研究了对应于同一离散孤立子方程族的三个离散特征值问题的非线性化特征值问题以及它们之间的关系。 - Then the nonlinearization procedure is applied to the eigenvalue problem of mkdv - nls hierarchy . under bargmann constraint , it is shown that lax pairs are nonlinearized to be two finite - dimensional liouville completely integrable system
同时,应用非线性化技巧,证明了在bargmann约束下, mkdv - nls方程族的lax对可被非线性化为两个有限维liouville完全可积系。 - In this paper , we convert the complex third order eigenvalue problems into the real third order eigenvalue problems . then , based on the euler - lagrange equation and legendre transformation , a reasonable jacobi - ostrogredsky coordinate system have been found , then using nonlinear method , the lax pairs of the real bargrnann and neumann system are nonlinearized , so as to be a new finite - dimensional integrable hamilton system in the liouville sense is generated . moreover , the involutive representations of the solution for the evolution equations are obtained
本文将复的三阶特征值问题转化为实的三阶特征值问题,利用euler - lagrange方程和legendre变换,找到一组合理的实的jacobi - ostrogredsky坐标系,从而找到与之相关的实化系统,再利用曹策问教授的非线性化方法,分别将三阶特征值问题及相应的lax对进行非线性化,从而得到bargmann势和neumann势约束系统,并证明它们是liouville意义下的完全可积系统,进而给出了bargmann系统和neumann系统的对合解。 - In this paper , by means of the euler systems on the symplectic manifold , the bargmann system and the neumann system for the 4f / lorder eigenvalue problems : are gained . then the lax pairs for them are nonlinearized respectively under the bargmann constraint and the neumann constraint . by means of this and based on the euler - lagrange function and legendre transformations , the reasonable jacobi - ostrogradsky coordinate systems are found , which can also be realized
本文主要通过流形上的euler系统,讨论四阶特征值问题所对应的bargmann系统和neumann系统,借助于lax对非线性化及euler - lagrange方程和legendre变换,构造一组合理的且可实化的jacobi - ostrogradsky坐标系? hamilton正则坐标系,将由lagrange力学描述的动力系统转化为辛空间( r ~ ( 8n ) , )上的hamillton正则系统。