camassa meaning in Chinese
卡马萨
Examples
- Exact travelling wave solutions and concave or convex peaked and smooth soliton solutions of camassa - holm equation
方程的精确行波解及其凹凸尖峰与光滑孤立子解 - At some time , we also research the existence of global smooth solution of the initial boundary value problem for a class of generalized camassa - holm equations
同时还研究了一类广义camassa ? holm方程初值问题整体解的存在性。 - In this paper , we study the existence of global solution and its property of the initial boundary value problem for camassa - holm equations and ginzburg - landau equations
本文研究了camassa ? holm方程和ginzburg ? landau方程初边值问题整体解的存在性及其性质。全文共分三个部分。 - In this paper , i consider the traveling wave solutions and peakons of the generalized camassa - holm ( gch ) equation and give the express of the solitons of this equation . the peakons and their figures of the gch equation are given with the mathematic software for m - 1 , m = 2 and m = 3 in particular ; for m = 3 , i get the generalized dissipative camassa - holm equations by adding a dissipative term and find two types exact traveling wave solutions of this equations . i also apply the homogeneous balance method into the gch equation so that i get a group of smooth solutions for m = 2 and m = 3 and the backlund transformation for m - 3 of the gch equation
本文研究广义camassa - holm ( gch )方程的行波孤立子解及尖峰孤立子解,给出gch方程的行波孤立子解的表达式,特别的,对m = 1 、 m = 2 、 m = 3时利用mathematica数学软件进行计算,解出了gch方程的尖峰孤立子解,并给出了此时gch方程的尖峰孤立子解的图形,使数值分析和理论相结合;对m = 3时的gch方程增加一耗散项u _ ( xx )后得到广义耗散camassa - holm方程,并解出此方程的两类精确行波解;本文将齐次平衡法应用到gch方程中,解出m = 2 、 m = 3时的gch方程的一组光滑解,同时应用此方法得到了m = 3时的gch方程的backlund变换。 - The second section : under the conditions of nonlinear boundary controbility , we consider the initial boundary value problem of camassa - holm equations with dissipative . by using the contractive mapping fixed point theorem and a priori estimates , the existence of global smooth s olution , global attractor in h ~ ( 2 ) , t ime p eriodic s olution or almost - periodic solution and the global exponential stability are proved
第二部分:在非线性控制边界条件之下,对于带耗散项的camassa ? holm方程的初边值问题,用压缩映射不动点原理及先验估计方法,证明了整体光滑解的存在性、整体解的指数稳定性、 h ~ 2空间中整体吸引子的存在性以及时间周期解和殆时间周期解的存在性。