bruck meaning in Chinese
布鲁克
布吕克
Examples
- Bruck an der mur
布鲁克安德莫尔 - Connie bruck wrote stunning accounts of the culture within time warner and of a wall street anic - depressive
康尼?勃拉克写了“时代?华纳”公司内部令人震惊的企业文化,以及华尔街的那些患抑郁症的疯子。 - In this paper , we first introduce the achivements of the research on bruck - reilly semigroups in these years , then we study block - separating congruences lattices on e - bisimple semigroups . let / be the set of natu ral numbers , and i the set of all nonnegative integers
设i为自然数集合, i ~ 0为所有非负整数集合, t为任意幺半群, g为幺半群t中所有单位组成的群,用1来记t中的幺元。 - Reich [ 2 ] proved the ergodic theorems to nonexpansive semigroups in hilbert spaces . takahashi and zhang [ 3 ] , tan and xu [ 4 ] extended baillon ' s theorem to asymptotically nonexpansive and asymptotically nonexpansive type semigroups in hilbert spaces . recently , reich [ 6 ] , bruck [ 5 ] , oka [ 7 ] gave the ergodic convergence theorems for nonexpansive , asymptotically nonexpansive mappings and semigroups in uniformly convex banach spaces with frechet differentiable norm . li and ma [ 13 ] obtained the ergodic convergence theorems for general commutative asymptotically nonexpansive type topological semigroups in reflexive banach space , which is a great breakthrough
Baillon [ 1 ]首先在hilbert空间的非空凸闭子集上给出了非扩张映照的弱遍历收敛定理。 baillon的定理引起了很多数学家的兴趣, reich [ 2 ]在hilbert空间中证明了非扩张半群的遍历收敛定理。 takahashi和zhang [ 3 ] , tan和xu [ 4 ]分别将baillon的定理推广到渐近非扩张半群及渐近非扩张型半群。 - By using bruck ' s lemma [ 10 ] , passty [ 31 ] extended the results of [ 1 , 16 ] to uniformly convex banach space with a frechet differentiable norm . however , there existed more or less limitations in their methods adopted . by using new techniques , chapter2 of this paper discussed the weak convergence theorem for right reversible semigroup of asymptotically nonexpansive type semigroup and the corresponding theorem for its almost - orbit in the reflexive banach space with a frechet differentiable norm or opial property
Feattieranddotson 16 ]和bose [ l ]通过使用opial引理17 }在具弱连续对偶映照的一致凸b ~ h空间中证明了渐近非扩张映照的弱收敛定理, passty 31通过使用bruck引理10 ]把1 , 16 ]的结果推广到具freehet可微范数的一致凸banach空间,然而,他们的证明存在着种种局限性。