| 1. | Orthogonal projection in real matrix space 实对称矩阵空间的直交投影 |
| 2. | Additive preservers of rank on rectangular matrices over fields 域上长方矩阵空间的加法秩保持 |
| 3. | Additive rank - one preserving surjections on hermitian matrix spaces 矩阵空间上保秩一的可加满射 |
| 4. | Linear maps preserving inverses of matrices on symmetric matrix space 对称矩阵空间上保逆线性映射 |
| 5. | Linear operators preserving the minimal rank over matrix space 关于矩阵空间上保持极小秩的线性算子 |
| 6. | Linear maps preserving group inverses of matrices on symmetric matrix spaces over a field 域上保对称矩阵空间上群逆的线性映射 |
| 7. | Among these works , the linear operators concerned are linear operators on matrix spaces over some fields or rings 在这些工作里我们看到所涉及到的线性算子主要是在域或环上的矩阵空间上的线性算子 |
| 8. | Linear preserver problem ( lpp for short ) concerns the characterization of linear operators on matrix spaces that leave certain functions , subsets , relations , etc . , invariant 线性保持问题(简称lpp )刻画在矩阵空间上保持特定的函数,子集,关系等不变的线性算子 |
| 9. | In this paper , we characterize the linear operators preserving adjoint matrices on the spaces of all matrices , symmetric matrices and upper triangular matrices over domain 摘要木文刻画了整环上的全矩阵空间、对称矩阵空间和上三角矩阵空间上保持伴随矩阵的线性算子的结构。 |
| 10. | It not only could solve the problem of learning on the incremental data sets , but also could considerably reduce the size of traditional decision matrix and avoid the repeated computation in traditional decision matrix algorithm 这不仅解决了动态数据环境下归纳学习问题,而且能降低矩阵空间规模,避免了传统决策矩阵算法中的重复计算。 |