| 1. | The hausdorff dimension of fractals generated from representing system 广义自相似集的维数 |
| 2. | Hausdorff dimension theorems for operator - self - similar markov processes 过程的像集和图集的一致维数 |
| 3. | We obtain an estimation about the hausdorff dimension of self - affine sets 摘要本文给出了一类自仿集的维数估计式。 |
| 4. | The estimate of the hausdorff dimension of self - similar measure under double lipschitz condition 条件下自相似测度的维数估计 |
| 5. | In chapter 4 . we discuss the hausdorff dimension of chaotic sets for interval self - maps 第四章研究了区间映射混沌集的hausdorff维数。 |
| 6. | Futhermore , we studied that the hausdorff dimension of its inverse image set 进一步,研究了非退化扩散过程的样本轨道的逆像集的hausdorff维数。 |
| 7. | Based on the results , we calculate a upper bound or a lower bound of the hausdorff dimension of some self - affine sets 利用它们可方便地求出某些自仿集维数的上界或下界。 |
| 8. | Some sufficient conditions that there is a chaotic set for interval self - map with positive hausdorff dimension were obtained 得到了,区间映射存在正hausdorff维数混沌集的一些充分条件。 |
| 9. | In this paper , we obtained the hausdorff dimension of image set for n 1 . however , the proving method is distinct from [ 1 ] 本文对n 1时,得到了象集的hausdorff维数,但证明方法则有别于文[ 1 ] 。 |
| 10. | In [ 3 ] , it was shown that the hausdorff dimension of level set of one - dimensional brownian sample paths is 1 / 2 with probability 1 文[ 3 ]证明了对于一维brown运动,几乎所有的样本轨道的水平集的hausdorff维数是1 / 2 。 |