| 1. | Only magnetic dipole and higher multipole configurations occur in nature . 自然界中只能出现磁偶极子以及磁多极子的形式。 |
| 2. | Implementation of the fast multipole expansion technique in the higher order bem 快速多极子展开技术在高阶边界元方法中的实现 |
| 3. | Determining breakdown pressures in transversely isotropic formation by multipole array acoustic logs 利用多极子阵列声波测井资料计算横向各向同性地层破裂压力 |
| 4. | Meanwhile , the mlfipwa is superior to the mlfma in numerical operation and some other potential aspects 同时,该算法较之多层快速多极子方法有明显的数值实现优势和潜在优势。 |
| 5. | Using multilevel fast multipole algorithm to analyze electromagnetic scattering in resonance region of 3 - d complex objects 多层快速多极子分析三维复杂目标的谐振区电磁散射特性 |
| 6. | The present paper applies fast multipole method ( fmm ) and multilevel fast multipole algorithm ( mlfma ) based on the higher order moment of method ( mom ) to solve scattering from complex target 本文采用基于高阶矩量法的快速多极子方法( fmm )及多层快速多极子方法( mlfma )计算复杂目标的电磁散射。 |
| 7. | It reduces greatly the computational complexity of matrix - vector multiplication in conjugate gradient iteration improves the efficiency of mlfma while the reasonable accuracy is maintained 该方法在保证合理计算精度的同时大大降低了迭代过程中矩阵矢量相乘的计算复杂度,提高了多层快速多极子方法计算效率。 |
| 8. | The common methods for analysis of electromagnetic modeling have been reviewed firstly , the mlfma based on integral equation method and its potential deficiency is briefly presented , and the fipwa is introduced then 本文首先回顾了电磁建模的常用分析方法,介绍了基于积分方程方法的多层快速多极子方法,及其某些潜在的缺陷,引出本文研究的快速非均匀平面波算法。 |
| 9. | To further speed up the solution of scattering from three dimensional electrically large object by multilevel fast multipole algorithm ( mlfma ) , a local multilevel fast multipole algorithm ( lmlfma ) based on local interactions is proposed to evaluate matrix - vector multiplication 摘要为了进一步加速多层快速多极子算法求解电大尺寸目标电磁散射,提出了一种基于局部耦合技术计算矩阵矢量相乘的多层快速多极子方法。 |
| 10. | Firstly the development and the numerical implementation of integral equation method are simply introduced , then the deduction of the mlfma and some of the general difficulties in the mlfma are discussed , several techniques to solve these difficulties are also presented 首先简要介绍了积分方程方法的发展及其数值实现,然后分析了多层快速多极子算法的推导过程,并分析了目前多层快速多极子算法的一些共性的问题,并针对上面的共性问题提出解决方案。 |