| 1. | Study about the semicontinuity of many - varibles function 关于多元函数的半连续性的研究 |
| 2. | Continuity of l - fuzzy set - valued mappings 集值映射的几乎半连续性 |
| 3. | Almost semi - continuity of set - valued mappings on super - spaces 锥拟凸集值映射与集值映射的锥半连续性 |
| 4. | Upper semi - continuity of attractors for multivalued semi - flow under random perturbation 多值半流的吸引子在随机扰动下的上半连续性 |
| 5. | Upper semi - continuity properties of solutions of cone - upper - semi - continuous optimizations for set - valued maps 锥上半连续集值优化解的上半连续性 |
| 6. | Connectedness of the super efficient solution set of multiobjective optimization with cone upper semicontinuous cone quasiconvex set - valued mapping 锥挠动意义下弱有效解的上半连续性 |
| 7. | One of reasons is that there is no topology on closed sets which guarantees the compactness of the minimising sequences and the lower semiconti - nuity of the sdq - 1 原因之一在于不存在关于闭集的拓扑能够保证极小化序列的紧性和s _ d ~ ( q - 1 )的下半连续性。 |
| 8. | Criteria were derived for functions to be quasiconvex under lower semicontinuity or upper semicontinuity conditions by mukherjee and yeddy ( ref . l ) . in the first part of this paper , we generalized almost all of the results there Mukherjee和yeddy在文献[ 1 ]中,分别在函数的下半连续性和上半连续性的条件下,对于函数的各种拟凸性给出了一些判别方法。 |
| 9. | In the paper , we extend the definition of traditional image edge to morphology edge , derive a series of new morphological operators which are enlightened by semi - increasing and semi - continuation and first time bring forward double - structure element used in morphological processing at one time 受形态运算性质中有限递增性和半连续性的启发,我们提出在一次形态处理中使用双结构元的一系列一般性形态边缘检测算子和抗噪型形态边缘检测算子,从理论上证明了它们的可行性并给出这些算子的性质。 |
| 10. | We introduce some marks and lemmas before we construct chebyshev rational spectral formation of semi - discrete with respect to space . then we obtian the error estimate for the approximate solution and the existence of approximate attractor an , and besides , we prove the upper semi - continuty on the global attractor 在引入一些本文所需的记号和引理之后,通过建立chebyshev关于空间方向的半离散有理谱格式,证明了方程近似解的误差估计,以及在此格式下近似吸引子a _ n的存在性,并且得到关于原方程整体吸引子的上半连续性。 |