×

马丢 meaning in English

mathieu

Examples

  1. From the exact expression of the field , we obtain a multipole polynomial expansion , and under the paraxial condition we furthermore obtain the approximate expression . the loffe trap , consisting of two coils with parallel currents and four straight conductors with currents in alternating directions , is one of the most important traps . we specially study the field structure of it by using both the exact expression and a multipole polynomial expansion that facilitates studies of classical or quantum orbits . if the region near the origin is of interest , we may obtain a simple expression of the field and this configuration may be called idealized loffe trap
    若只讨论阱中的近原点区域时,阱中的磁场可以呈现出一种简洁的形式,人们把它称为理想ioffe阱。磁矩反平行于磁场的中性粒子在阱中与磁场发生相互作用,借助相互作用势,可以获得粒子在阱中的经典运动方程。在一定的近似条件下,我们可以采用逐次近似的方法,使方程简化,其中三个分量式中关于z的方程比较容易求解,而关于x 、 y的方程则演化为我们熟悉的马丢方程的形式。
  2. We consider a neutral particle with magnetic moment antiparallel to the field . with the interaction potential energy between the magnetic moment of the particle and the magnetic field , we obtain the classical motion equation of the neutral particles in the loffe trap . in some limit conditions , by using the perturbative method , the equations may take on concise forms . of which the two equations about x and y are mathieu equations . if we properly set the parameters and have the condition a > > q > 0 , we can solve the mathieu equation with the traditional wkbj method . as a new attemptation , with fourier series expansion we solve the mathieu equation and obtain the classical motion law of the neutral particles
    若阱的参数设置使得条件> > q 0成立时,我们可以利用传统的wkbj方法近似求解马丢方程。作为一种新的尝试,本文还采用傅立叶级数展开的办法来对马丢方程进行求解,从而得到中性粒子在阱中的经典运动规律。在研究ioffe阱对中性粒子的囚禁问题时,实际上我们更感兴趣的是马丢方程的周期解,而要想获得这种周期解,和q必须满足一定的关系,亦即必须选择阱的特定的参数和粒子的特定初始条件,对这一问题我们进行了尝试性的研究。
  3. The major achievements are listed as the followings : mathieu functions remain difficult to employ , mainly because of the impossibility of analytically representing them in a simple and handy way . the methods for the computation of all mathieu functions of integer orders for large range of the order n and the parameter q were presented here . the calculations were made by programs using matlab to compute the mathieu functions
    本论文的主要工作:由于在使用马丢函数时存在一些困难,主要是因为不能简单方便地对其进行解析表示,我们给出整数阶各类马丢函数的详细计算方法,该方法适合较大范围的阶数n和参数q值,实际计算中采用了matlab软件进行编程实现,并给出了各类马丢函数在自变量和q值两个参数变化下的三维可视化图形。
  4. Then , use galerkin principle to put the stability equation in order for the special function the mathieu standard form , and utilize the boundary of the mathieu solves ’ steady area and unsteady area , namely special relationships of and , draw the discrimination equation of losing the magnetoelastic steady critical state
    然后,应用galerkin原理将稳定性方程整理为特殊函数马丢方程的标准形式,并利用马丢方程的稳定解区域与非稳定解区域的分界,即系数和的本征值关系得出了磁弹性最低失稳临界状态的判别方程。

Related Words

  1. 丢在
  2. 丢不了
  3. 丢回
  4. 丢勒
  5. 丢东西
  6. 丢乌纱帽
  7. 丢掷
  8. 丢钱
  9. 丢发球权
  10. 马定律
  11. 马定西印群
  12. 马东
  13. 马东法
PC Version

Copyright © 2018 WordTech Co.