边集 meaning in English
frontier set
Examples
- The euclidean 2 - connected steiner network problem is to determine the minimum - weight 2 - connected steiner network on a given set of points in the euclidean plane
设p是欧几里德平面上的一个有限点集, n是顶点集为v ,边集为e的一个网络,如果p - A simple undirect graph x is said to vertex - transitive , edge - transitive , and arc - transitive , if its automorphism group acts transitively on the vertices , edges and arcs , respectively
如果一个简单的无向图的自同构群分别传递的作用在它的点集,边集和弧集上,那么分别称这个图是点传递的,边传递的和弧传递的。 - The method first find the vertex aggregate and the edge aggregate primary , then revise them after checking the radian of the palm - line between two vertices , the palm - lines ’ number between two vertices and the distance of the vertices
该算法先初步确定无向图的顶点集和边集,然后通过考查顶点之间掌纹线的弧度、顶点之间掌纹线的条数和顶点之间的距离对顶点集和边集进行了适当的修正。 - The main context of this paper is to generalize some rigurous results of " critical exponents " from binary tree to k - nary tree . percolation on the trees is defined as follows . we write t = ( z , e ) for the bond percolation on the tree . we write z for the set of vertices of t . arid e for the set of its edges
K分树是一种特殊的树,它是一种规则树,具体的定义如下:图t = ( z , e )称为k分树, (其中z表示点集, e表示边集)是指除了一个点(称为顶点) ,与k个边相连(即该点的度为k ) ,其它各点均与k + 1个边相连(度为k + 1 ) ,我们可以把该点记为,称为第0代(或祖先) ,与该顶点相邻的点称为第一代。 - This paper studies the band percolation of the models of the triangle lattice and the hexagonal lattice . before we study the models of the triangle lattice and the hexagonal lattice , we will introduce period . let g = ( vc , ec ) be a connected graph , we write vg for the set of vertices of g and egfor the set of its edges , u e vc is a vertex , and v is the coordinate vector
在介绍平面正三角形和正六边形点格的边渗流模型之前我们先引入周期的概念:设g = ( v _ g , e _ g )为连通图其中v _ g , e _ g分别为图g的顶点集和边集, u v _ g为的顶点, v为平面的坐标向量。