置信系数 meaning in English
confidence coefficent
confidence coefficient
confidence factor
confidence index
confidencecoefficent
Examples
- Firstly , by numerical and theoretical analysis , the author compares some existent confidence intervals , for example , " exact " confidence interval , wald confidence interval and bayesian confidence interval , and finds some deficiencies points of the confidence intervals , whose modification version has been proposed . also , several better confidence intervals such as are also presented . secondly , for given confidence coefficient and interval width , the author constructs a class of asymptotical two - stage interval estimate procedures . at the same time , under varies restriction of confidence coefflcientent interval width , the optional sample size of the first stage has been computed by numerical computation . the numerical computation shows that the method considered in this dissertation have good properties and applied value
同时,由于poisson分布的特性,我们知道不存在其参数区间长度小于0 . 5的置信区间,基于这些情况,我们主要展开了以下两个方面的研究:一是利用数值计算分析与理论分析的方法对现有的若干置信区间如“精确”置信区间, wald置信区间, bayes置信区间等进行分析比较,发现了一些缺陷,针对这些缺陷,我们进行适当的修正,并得到几种性质较好的置信区间如:修正大样本区间jeffreys原则下置信区间二是针对已给定的置信系数与区间长度,我们提出了一种渐近的两阶段区间估计程序,并利用数值计算的方法,在各种置信系数与区间长度限定下,算出了最优的第一阶段观测次数(抽样量) ,大量数据表明,本文考虑的方法性态良好,具有应用价值。 - However , via intensive numerical computation , the author finds that actually some characteristic of this confidence intervals , for example , confidence coefficient , expectation width and coverage efficiency fluctuate intensely when the sample size varies given the parameter , or when the parameter varies given the sample size
但是我们通过精细的数值计算发现,由于总体分布的离散性,这些置信区间的特性(置信系数、期望长度、覆盖效率)实际表现为当参数固定随着观测次数(样本值)变化或当观测次数固定随着参数变化而发生强烈震动。