稳定流形 meaning in English
stable manifold
Examples
- This article studies the existion of homoclinic orbit bifurcation of sirs modle , moreover , it determines the relative location of stable manifolds and unstable manifold of hyperbolic fixed points of this system , therefore , it shows the parameter range of existing limit circle
本文讨论了具有暂时免疫传染病模型同宿轨道分支的存在性,利用melnikov函数确定了该系统双曲不动点的稳定和不稳定流形的相对位置,从而给出存在极限环的参数范围。 - This paper is concerned with , the existence and stability of travelling wave solutions for the viscous balance law which is an extension of viscous conservation law where a reaction term g ( u ) is added . l ) the existence of travelling wave solutions by geometric singular perturbation method , we investigate the existence of travelling waves ( a2 ) connecting a saddle point and a sink point and the existence of viscous shock waves c connecting two adjacent or disadjacent saddle points . by giving a detailed analysis of the fast and slow manifolds and verifying the transversality of the intersection of singular stable and unstable manifolds of the reduced problem along the singular heteroclinic orbit , we obtain the existence of travelling waves ( a2 ) in the case of a convex flow function / and that of viscous shock waves c under the assumption that f " is bounded
主要结果如下: 1 )行波的存在性本文利用[ 37 ]中几何奇异摄动理论,通过仔细分析= 0时的快流、慢流,验证= 0时慢流方程的稳定与不稳定流形横截相交于奇异异宿轨道,先在f为凸的条件下严格证明了( )存在连接不相邻的鞍点、结点的行波( a2 ) ;然后在地f有界的条件下得到( )存在连接鞍点(包括相邻和不相邻)的粘性冲击波c ,弥补了[ 11 ]缺少严格证明的不足,并推广了[ 11 ]在f为凸的条件下得到的粘性冲击波的存在性结果。 - In section 2 , we study the fixed point , stable set and unstable set of this system . for given parameters a trapping region is found with the property that any interval of unstable set will be expand under the map , so we get the conclusion that the system has infinitely many homoclinic orbits . as a consequence of the previous conclusion , we discuss the attractor of the system
在本文中,我们讨论了一个分段线性模型,它是物理学中用来模拟r - l - diode电路行为的数学方程,通过研究,我们得到该系统的一些拓扑性质以及符号动力学中的一些结论,主要内容如下:在第二节中,我们对给定的参数值,通过数值计算研究了该系统的不动点,不动点附近的稳定集与不稳定集,发现该系统中存在一个捕捉区域:该区域中的不稳定流形总体上是扩张的。