激波的形成 meaning in English
shock-wave formation
Examples
- Based on the theory of gas dynamics and thermodynamics , the cooling mechanism and the formation and running rule of shock wave in the tube of the thermal separator was explored
从热力学及气体动力学角度出发,探讨了热分离机的制冷机理、激波的形成与运动规律。 - Nonlinear dynamical systems ; nonlinear waves ; diffusion ; stability ; characteristics ; nonlinear steepening , breaking and shock formation ; conservation laws ; first - order partial differential equations ; finite differences ; numerical stability ; etc
非线性动力系统;非线性波;扩散过程;稳定性;特征值及特征曲线;非线性陡斜,阻断和激波的形成;守恒定律;一阶偏微分方程;有限差分;数值稳定性等等。 - In the thermal separator , the energy is transmitted through the movement of the shock wave . so that , it is of great importance to study the formation , action and controlling of the shock wave for discovering of the mechanism and ameliorating of the running nature of the thermal separator
热分离机内气体间能量的传输与转换主要通过激波的运动来实现的,因此深入研究激波的形成、运动、行为及控制方法对于揭示热分离机的制冷机理和提高其性能有重要意义。 - Most of partial differential equation arising from physical or engineering science can be formulated into conservation form : it directly reflects conservation laws in natural sciences . from viewpoints of fluid dynamics , it can be obtained from the mass , momentum , energy conservation laws . because the form ( 0 . 2 . 1 ) has no other terms such as dispersion , diffusion ( caused by nonuniformity of some physical states ) , reaction , memory , damping and relaxation etc , smoothness of solution of ( 0 . 2 . 1 ) may be loss as times goes on . even for the smooth inital data , solutions of ( 0 . 2 . 1 ) become discontinuous in a finite time
由于双曲守恒律( 0 . 1 . 1 )没有其它项,如色散( dispersion ) ,扩散( diffusion ) (某物理量分布不均匀引起的输运) ,反应( reaction ) ,记忆( memory ) ,阻尼( damping )及松弛( relaxation ) (描述非平衡态)等,而仅有输运或对流项( convection ) (由于流体的流动引起的输运)时,守恒律( 0 . 1 . 1 )的解失去光滑性(这里不特殊说明守恒律就指该意义下) ,甚至即使光滑的初始数据,解随着时间的发展会变成不连续,这在物理上表现为激波的形成。