演化算符 meaning in English
evolution operator
Examples
- In this scheme , the unitary of time evolution operators makes sure that the wavefunction is normalized in time - space propagation
在这种方案中,时间演化算符的幺正性保证了波函数在传播过程中的规范性。 - With the time - evolution operator obtained by means of su ( 2 ) spin coherent states we are able to derive analytic time - evolution of spin probability - current between the two quantum dots for various initial states
我们利用su ( 2 )自旋相干态获得包括库仑相互作用hubbard模型的时间演化算符,得到解析的含时自旋流。 - The energy eigenvalue , eigenfunction , matrix elements of coordinate and momentum operators in energy representation , and evolution operator for a two - dimentional coupled oscillator are presented by using the general linear quantum transformation theory
摘要运用广义线性量子变换理论,给出一类二维耦合量子谐振子的能量本征值、本征函数、坐标和动量算符在能量表象中的矩阵元及演化算符。 - Using lewis - riesenfeld theory , we obtain exact solutions of the time - dependent system , then we recover both n - pulse method based on time - evolution operator of the system and stirap method in terms of instantaneous eigenstates with the help of time - dependent gauge transformation
利用含时规范变换理论得到系统的精确解,我们用时间演化算符同时得到文献中分别采用-位相法和stirap (受激拉曼散射)方法得到的结果,因而更具有普遍性。 - We examin e the generation of bell state in bose - einstein condensates of two interacting species trapped in a double - well configuration analytically and the density of probability for finding the entangled bell state is given . we find that the oscillation amplitude of the probability of density for finding the entangled bell state becomes greater as the ratio of the interspecies interaction strength and the tunneling rate increases , moreover the self - interaction strength of the component a ( b ) has no effect on it . also we use the time - dependent su ( 2 ) gauge transformation to diagonalize the hamilton operator , obtain the berry phase and analytically the time - evolution operator
此外我们还研究了在双阱玻色-爱因斯坦凝聚中纠缠态的演化,研究发现随着组分间相互作用和随穿率的比值的增加系统演化到bell态的概率变大,而且组分自身内在的相互作用对形成bell态的几率没有影响;并且用含时su ( 2 )规范变换对角化哈密顿量得到了系统的berry位相和时间演化算符,并研究了量子随穿过程。