×

标准方差 meaning in English

standard variance
standarddeviation

Examples

  1. Embedding is selectively done in 8 x 8 blocks whose standard variance is less than the average of 8 - neighbor connective blocks " , and strength factor is determined by local image contents
    水印有选择性地嵌入在那些标准方差小于8 -邻域方差均值的8 8块内,嵌入强度因子由图像局部内容确定。
  2. In this paper we will discuss two asymptotic normal statistics of normal distribution n ( , ^ 2 ) standard variance and these statistics compare on the principle of relative asymptotic efficency
    摘要讨论了正态分布标准方差的两个渐近正态估计量及它们之间的优良性的比较,利用相对渐近效准则作为比较的准则。
  3. In the paper , the main results are brought forth in five aspects as follows : ( 1 ) . the analysis of statistics the characteristic indicated that the variation coefficient of the soil nitrogen density of 0 ~ 30cm depth is lower , the variation coefficient is only 3 . 6 % , the variation coefficient of the nitrogen density of 0 ~ 100cm depth is much bigger than that the 0 ~ 30cm depth , it is 100 % . based on the second national soil general survey material , the average soil profile depth is 101cm , this is in corresponding with skew normal distribution , its standard deviation is 0 . 0192
    通过研究,得到以下认识与结果: ( 1 )统计特征分析表明, 0 30cm厚度土壤氮密度的变异系数较低,为3 . 6 , 0 100cm厚度的氮密度的变异系数相对于来说就很大,为100 ;全国土壤剖面深度平均为101cm ,符合偏正态分布,标准方差为0 . 0192 ; 0 30cm厚度土壤氮密度服从对数正态分布,而0 100cm厚度土壤氮密度基本服从偏正态分布。
  4. Its center frequency was the range from low frequency to high frequency , its orientation is 6 and scale is 4 . gary image was directly transformed by these wavelet filters , the feature of extracting gray image target was denoted by the coefficients of gabor wavelet transform and its standard variance , the wavelet feature was input to the improved bp neural networks to classify
    滤波器的中心频率是一个从低到高的范围,滤波器采用6方向, 4尺度,对灰度图象直接进行小波变换,用gabor小波变换系数的模的平均值和其标准方差来表示抽取的灰度图象目标的纹理特征,最后,把获得的小波特征输入到改进的bp神经网络分类器进行分类识别。

Related Words

  1. 方差律
  2. 方差传播
  3. 分布方差
  4. 方差分析
  5. 未知方差
  6. 方差标准
  7. 方差定理
  8. 方差矩阵
  9. 总量方差
  10. 方差比率
  11. 标准范围
  12. 标准方案
  13. 标准方差分析
  14. 标准方程
PC Version

Copyright © 2018 WordTech Co.