×

极限集 meaning in English

alpha limit set

Examples

  1. ( 3 ) the derived set of - limit set is equal to the derived set of the set of the recurrent points
    ( 3 ) -极限集的导集等于回复点集的导集。
  2. We conclude for a graph map non - wandering set is contained in the closure of the set of eventually recurrent points ; - limit set of non - wandering set is contained in the closure of the set of recurrent points
    我们得到的结论是:对图映射而言,非游荡集包含于终于回复点集的闭包;并且非游荡集的-极限集包含于回复点集的闭包。
  3. In chapter two , we provide the notion of an eventually recurrent point , and discuss the relationship between non - wandering set of a graph map and its eventually recurrent set ; moreover , we study the relationship between - limit set of non - wandering set of a graph map and its recurrent set
    在第二章中,我们引入终于回复点的概念,讨论了图映射的非游荡集与终于回复点集之间存在的关系;并且进一步研究了非游荡集的-极限集与回复点集之间的关系。
  4. Finally , some properties of limits set of the solution of the dde with local monotone in the delay term are given . moreover , using the above discrete lyapunov functional , we prove that the poincare - bendixson theorem holds for some solutions of this dde . in chapter 4 , detail analysis of the global attractor for three particular classes of delay differential equations in concrete applications are given
    最后,给出了最终落在时滞项局部单调范围内的解的极限集的若干性质,并给出了类似于poincare一bendixson定理的结论及其证明,这些结论的证明尽管与mallet一paret的证明方法相似,但是本文的结论将他有关全局单调的理论推广到局部单调中去了。
  5. First , we describe the birkhoff center , the minimal attractive center and the minimal attractor . second , we give relationships among the attractor of axiom a , the non - wandering set , the limit set , the birkhoff center , the probability limit set , the minimal attractive center , the minimal attractor , the ruelle attractor and the measure center
    首先给出birkhoff中心、极小吸引中心、极小吸引子的刻划,然后给出对于公理a吸引子,非游荡集、极限集、 birkhoff中心、概率极限集、极小吸引中心、极小吸引子、 ruelle吸引子以及测度中心之间的一个层次关系。
More:   Next

Related Words

  1. 衰落极限
  2. 极限组成
  3. 灌装极限
  4. 功能极限
  5. 极限高飞
  6. 相容极限
  7. 极限线
  8. 摩擦极限
  9. 极限性质
  10. 极限推理
  11. 极限激磁
  12. 极限激发法
  13. 极限集合
  14. 极限集邮
PC Version

Copyright © 2018 WordTech Co.