×

权空间 meaning in English

weight space

Examples

  1. For the travelling waves ( al ) and ( a2 ) , we consider the distribution of spectra for the linearized operator in some weighted spaces
    对行波( a1 )和( a2 ) ,我们在加权空间考虑线性化算子的谱分布情况。
  2. By introducing weighted space and using the method of priori estimatehe , uniformly compactness are achieved for s ( t ) in weighted space to overcome the noncom - pactness of the classical sobolev embedding in unbounded domain
    在加权空间进行先验估计,获得解算子s ( t )在加权空间紧的有界吸收集,从而在加权空间得到整体吸引子的存在性。
  3. In the second chapter , the kdv type equation on unbounded domain is considered . applying with the method of decomposing operator and the theory of constructing some compact operator in weighted space , the existence of exponential attractor is obtained
    在第二章中,运用带权空间构造一类紧算子和算子分解的方法,研究了无界区域上的kdv型方程,得到了该方程指数吸引子的存在性
  4. We get the estimates of the upper bounds of hausdorff and fractal dimensions for the global attractors . in section 5 . 3 , the cauchy problem is studied , by using the weighted function space and the interpolating inequality , the existence of the global attractors for the damped generalized coupled nonlinear wave equations in an unbounded domain is proved . in section 5 . 4 , the time periodic solution problem of damped generalized coupled nonlinear wave equations with periodic boundary conditions is studied , the existence of time periodic soluation of this problem is proved by using the convergence of approximate time periodic solution sequences
    第五章,考虑了一类广义耦合的非线性波动方程组,在第二节中讨论了周期初值问题,证明了整体光滑解的存在性和唯一性,得到了整体吸引子,给出了hausdorff维数和分形维数的上界估计;在第三节中讨论了cauchy问题,利用加权函数和加权空间的插值不等式,证明了无界区域上整体吸引子的存在性;在第四节中证明了时间周期解的存在性。
  5. Chapter 6 , consider a coupled generalized kdv - burgers equation . in section 6 . 2 , we study the initial - boundary value problem in the semi - unbounded domain , the existence of global solutions and global attractors is proved by means of a uniform priori estimate for time . in section 6 . 3 , the cauchy problem by using the weighted space , the existence of the global attractors for a coupled generalized kdv - burgers in an semi - unbounded domain is proved
    第六章,考虑了一类广义耦合的kdv - burgers方程,在第二节中讨论了半无界区域上的初边值问题,证明了整体光滑解和整体吸引子的存在性;在第三节中讨论了cauchy问题,利用加权函数和加权空间上的插值8不等式,证明了半无界区域上整体吸引子的存在性。
More:   Next

Related Words

  1. 权久郎
  2. 权矩阵
  3. 权利
  4. 权利, 所有权
PC Version

Copyright © 2018 WordTech Co.