×

指数算法 meaning in English

exponentiation algorithm

Examples

  1. The bit - operation complexity of the fast exponential algorithm is polynomial
    快速指数算法的比特运算复杂度是多项式的。
  2. From the se algorithm , the relationship between the local minimum and the equalizer delay is demonstrated , and it is more accurate compared to the system delay relation formulation
    ?围绕线性均衡器的时延极小值问题,从超指数算法推导了线性均衡器相对于均衡器时延的极小值关系,修正了线性均衡器相对于系统时延的关系式。
  3. Phase space reconstruction technology and characteristic indices algorithms , which show the wide prospects of engineering application , are presented to in order to distinguish dynamical behavior underlying observed time series from rub - impact rotor
    提出了具有工程化前景的相空间重构技术和统计特征指数算法,以评判碰摩转子观测数据所隐含的动力学行为。
  4. The elliptic curve digital signature algorithm ( ecdsa ) is the elliptic curve analogue of the digital signature algorithm ( dsa ) . it was accepted in 1999 as an ansi standard , and was accepted in 2000 as ieee and nist standards . unlike the ordinary discrete logarithm problem and the integer factorization problem , no subexponential - time is known for the elliptic curve discrete logarithm problem . for this reason , the strength - per - key - bit is substantially greater in an algorithm that uses elliptic curves
    椭圆曲线数字签名算法( ecdsa )是数字签名算法( dsa )的椭圆曲线对等。它先后成为ansi , ieee , nist和iso的标准,而且其它的一些组织正在考虑成为其标准。不象普通的离散对数问题和因数分解问题,椭圆曲线离散对数问题没有已知的亚指数算法,所以使用椭圆曲线的算法在密钥的位强度是足够高的。
  5. The initialization method to achieve different equalizer delay local minimum is proposed for btea and se . comparison study using several uwac with different zero locations is made to demonstrate the equivalent of different initialization method for least mean square ( lms ) algorithm , btea , se and cma
    尽管常数模盲均衡算法的初始化仍然是一个公认的未能解决的问题,但本文通过几条不同零点位置的水声信道,对比研究了自适应最小均方误差算法、倒三谱算法、超指数算法和常数模算法的不同权向量初始化的等效性。
More:   Next

Related Words

  1. boor算法
  2. 存取算法
  3. 缓冲算法
  4. 图解算法
  5. 算法规则
  6. 心动算法
  7. 符号算法
  8. 随机算法
  9. 归并算法
  10. 简算法
  11. 指数说明
  12. 指数速率
  13. 指数算符
  14. 指数算子
PC Version

Copyright © 2018 WordTech Co.