扩散工艺 meaning in English
diffusion process
diffusion technique
Examples
- The conversion efficiency of 14 % is possible if the al back surface field and the diffusion process are improved
L 。若进一步改善铝背场及扩散工艺条件,有望达到14的效率。 - Current research of the technique of ga diffusion and the negative resistance effect of open - tube ga - diffusion transistor are emphasized
重点介绍了目前开管ga扩散工艺的发展现状和开管扩镰晶体管负阻效应的研究现状。 - Same difficulties in the fabrication process of lithium niobate devices , such as ti diffusion waveguide fabrication , ti film left - off , had overcame , and it provide the foundation for further investigation
克服了铌酸锂光开关制作过程中ti扩散工艺、 ti膜提浮工艺、电极套刻和抛光工艺等难题,为进一步进行铌酸锂器件的研究打下了坚实的基础。 - With the development of doping technology , the formation of the base region in high - voltage transistor can be made by b diffusion technology , b - a1 paste - layer diffusion technology , close - tube ga - diffusion technology and open - tube gallium - diffusion technology
随着掺杂工艺的不断发展,高反压晶体管基区的形成经历了扩硼工艺、硼铝涂层扩散工艺、闭管扩镓工艺到开管扩镓工艺的发展。 - At the initial stage of planar technique , b was employed as ideal diffusion impurity in base - region of npn si planar devices because of the match of its solid - solubility and diffusion coefficient in si with those of p in emission - region , and the good shield effect of sio2 film to b . but because of the relatively large solubility ( 5 1020 / cm3 at 1000 ) and the small diffusion coefficient , the linear slowly - changed distribution of acceptor b in pn junction can not be formed , which could not cater to the requirement of high - reversal - voltage devics . thereafter b - a1 paste - layer diffusion technology and close - tube ga - diffusion technology had been developed , while the former can lead to relatively large the base - region deviation and abruptly varied region in si , which caused severe decentralization of current amplification parameter , bad thermal stability and high tr ; the latter needed the relatively difficult pack technique , with poor repeatability , high rejection ratio , and poor diffusion quality and productio n efficiency
在平面工艺初期,由于b在硅中的固溶度、扩散系数与n型发射区的磷相匹配, sio _ 2对其又有良好的掩蔽作用,早被选为npn硅平面器件的理想基区扩散源,但b在硅中的固溶度大( 1000时达到5 10 ~ ( 20 ) ,扩散系数小, b在硅中的杂质分布不易形成pn结中杂质的线性缓变分布,导致器件不能满足高反压的要求,随之又出现了硼铝涂层扩散工艺和闭管扩镓工艺,前者会引起较大的基区偏差,杂质在硅内存在突变区域,导致放大系数分散严重,下降时间t _ f值较高,热稳定性差;后者需要难度较大的真空封管技术,工艺重复性差,报废率高,在扩散质量、生产效率诸方面均不能令人满意。