×

常数矩阵 meaning in English

constant matrix

Examples

  1. Based on the relationship between elastic constants and sound velocities in composite material and measuring very few velocities of different propagation direction , the elastic constant matrix can be calculated out
    依据复合材料中声波速度与材料弹性常数之间的本构关系,测量不同传播方向的少数几个声速,就可以得到其弹性常数矩阵
  2. As the study basis of the micromanipulator the kinematics of the micromanipulator is analyzed firstly and the characteristic of the micromanipulator is taken into a full consideration . through proper abstraction and simplication the jacobian matrix is introduced which reflects the characteristic of the movement transmission , and such a matrix is constant
    作为研究微动机器人的基础,论文首先分析了微动机器人运动学,充分考虑微动机器人的特点,经过合理的抽象简化,推导出反映其运动传递特性的雅克比矩阵,该矩阵是一常数矩阵
  3. The astringency , error and stability of the numerical method are researched . zero matrix method , constant matrix method , and jacobian matrix method are constructed in order to improve numerical precision and efficiency . the steps for calculating matrix exponential function using pade approach method are given out
    研究了所提西安理工大学博士学位论文数值计算方法的误差、稳定性、收敛性等数学性质,在计算精度和计算效率两方面提出了一些改进措施,构造了零矩阵法、常数矩阵法、雅可比矩阵法等计算格式,给出了利川pade逼近计算矩阵指数函数的求解步骤。
  4. In chapter 2 , we firstly introduce the mathematical models of some discrete - time neural networks and give a proof of both the existence of an equilibrium point by schauder fixed - point principle and a generalized sufficient condition that guarantees the asymptotical stability of tcnn with asymmetric connection wrights matrix by using a new lyapunov function . we further study the stability of an equilibrium in tcnn with the connection wrights matrix in form of interval matrix
    在本文的第二章中,我们首先介绍了较常见的各种神经网络的数学模型,并依次给出了当连接权矩阵为常数矩阵和区间矩阵时, tcnn模型中不动点的存在性和全局渐近稳定性,在给出的理论证明中,利用了schauder不动点定理,构造了新的lyapunov函数。

Related Words

  1. 减幅常数
  2. kr常数
  3. 二进制常数
  4. 形常数
  5. 透水常数
  6. 稳定常数
  7. 惯性常数
  8. 表面张力常数
  9. 电动机常数
  10. 水分常数
  11. 常数计数原理
  12. 常数解
  13. 常数绝对量
  14. 常数块
PC Version

Copyright © 2018 WordTech Co.