×

多属性变换 meaning in English

multiple attribute transformation

Examples

  1. This paper is chiefly to set up a platform of multi - parameter nonlinear study and multi - parameter estimate to reservoir by means of the technology of multi - attribute transformation and neutral network combined with multi - attribute analysis of seismic parameters , reservoir inversion and reconstruction of reservoir geophysical characteristics on the foundation of large numbers researches and data - drive law in prediction of reservoir so as to provide more accurate geology conclusion and exploration deployment scheme in practical application . basing on the mentioned objective above , this paper has analyzed characteristics of many methods of reservoir prediction in the petroleum prospecting and their shortcomings in the practical geology problem of resolution
    本文主要目标就是在大量研究技术的基础上,以储层预测研究中的“数据驱动法”为数学物理上的理论基础,通过多属性变换和神经网络技术把地震参数的多属性分析技术、储层反演技术和储层地球物理特征重构的技术思想有机地结合在一起,建立起一套储层多参数非线性的预测研究和储层多参数估算技术平台,最终在实际应用中提供更加准确的地质和勘探部署。
  2. This paper has set up a platform of multi - parameter nonlinear study and multi - parameter estimate to reservoir by means of the technology of multi - attribute transformation and neutral network combined with multi - attribute analysis of seismic parameters , reservoir inversion and reconstruction of reservoir geophysical characteristics on the foundation of large numbers researches and data - drive law in prediction of reservoir so as to provide more accurate geology conclusion and exploration deployment scheme in practical application . besides , concrete example analysis has been made on this technology aiming at different types of oil - bearing reservoir prediction . summing up the characteristic of this technology , this paper point out its further direction in development
    基于上述目标,本文主要做了以下几方面的工作:详细分析了石油勘探局中多种储层预测方法的技术特点及本身在解决实际地质问题上的不足之处;在继承前人研究和技术的基础上,以“数据驱动法”为数学物理的理论基础,通过多属性变换和神经网络技术,把地震参数的多属性分析技术、储层反演技术和近年出现储层物理特征重构的技术思想有机地结合在一起,建立起一套储层多参数非线性预测研究和储层多参数估算技术平台;对该项技术针对不同类型含油储层的预测研究做出了具体的实例分析;总结了该项技术的特点,并指出进一步的发展方向。
  3. Because the synthetic seismic record and the seismic record data got in the surface are not well matching caused by the dispersion of seismic wave , frequent correction between them must be done before use . under control of well logging data , there are two important methods to get wave impedance from seismic data inversion : wave impedance inversion method based on convolution model and wave impedance inversion method based on wave equation . using seismic data attributes can predict the information of logs
    测井资料和地震资料是地震勘探中两种最重要的资料,由于地震波的频散,使合成地震记录与地面地震记录不能完全匹配,因此使用之前必须对二者进行频率校正地震资料在测井资料约束下可以进行反演,以求取地下波阻抗,主要有两种方法:基于褶积模型的波阻抗反演方法和基于波动方程的波阻抗反演方法可以用多属性变换由地震资料预测测井信息。
  4. " utilization of multi - attribute transformation in predicting well logging parameter " has transcended many traditional methods of reservoir research in many aspects , and possessing many outstanding technology superiority , which are showed below : ( 1 ) it takes new technology thought - " date - driven law " as the guidance , and inherits and synthesizes forefathers successful technology formed in many years . ( 2 ) ' it directly calculates the well logging parameter by way of the multiple attribute transformation , rather than by way of the sound impedance , like the porosity , while the way before is to make further estimates of the sound impedance from the seismic inversion result so that the result suffers the influence of many factors . ( 3 ) the usefulness of the seismic attribute is drawn from the seismic data , rather than the traditional poststack seismic data after nonlinear a transformation
    “ ;利用多属性变换预测测井参数”在很多方面超出了传统意义上的储层研究方法,具有突出的技术优势,表现在: ( 1 )它以新的技术思想? ? “数据驱动法”为指导,继承并综合利用了前人多年来形成的成功技术: ( 2 )它是直接通过多属性变换预测测井参数,而不是通过声波阻抗,如空隙度,以往的做法是从地震反演结果中的声波阻抗做进一步的模拟估算,其结果受到诸多因素的影响; ( 3 )所用到地震属性是从地震数据中提取的,而不是传统的迭后地震数据本身。

Related Words

  1. 选择属性
  2. 属性关系
  3. 属性级别
  4. 属性提示
  5. 顺序属性
  6. 串属性
  7. 共有属性
  8. 类型属性
  9. 时态属性
  10. 内容属性
  11. 多属电阻
  12. 多属性
  13. 多属性的
  14. 多属性分类
PC Version

Copyright © 2018 WordTech Co.