分离式热管换热器 meaning in English
separate heat pipe exchanger
Examples
- The condensation heat - exchange characteristic of a separate - type heat - pipe was studied on a 1 : 1 model . the heat pipe is heated by electricity , and working fluid is distilled water , and it is cooled by air . the experimental results show that , ( 1 ) when charging liquid ratio is 45 % , condensation heat - exchange coefficient reaches to maxium ; ( 2 ) when there is not non - condensing gas , the coeffcient decreases a little with the increase of vapour pressure , and it decreases by 9 . 5 % when the pressure increases from 0 . 16mpa to 0 . 36mpa ; ( 3 ) when there is non - condensing gas , the coefficient decreases a little , but when the gas is discharged by an exhaust value , it can be improved , when the volume content of the gas is 2 . 5 % , it can increased by 22 % ; ( 4 ) the effect of the non - condensing gas on the coefficient decreases with the increase of the pressure , and when the volume content of the gas is 5 % and the pressure increases from 0 . 16mpa to 0 . 36mpa , the coefficient increases by 6 % . the relative curves are given between condensation heat - exchange coefficient and air flowrate , charging liquid ratio and vapour pressure
建立了空气冷却实验台,热管的加热方式为电加热,工质为蒸馏水.在1 1模型上对分离式热管管内凝结换热特性、不凝性气体对凝结换热的影响及不凝性气体的扩散规律进行了试验,得出分离式热管有一最佳充液率,其值为45 %左右;凝结换热系数随着蒸汽压力的增加略有降低,在实验的压力范围内,降低了9 . 5 % ;不凝性气体对分离式热管的凝结换热仅影响冷凝段下部较小部分,通过排气阀排出不凝性气体可有效地改善冷凝段下部的凝结换热;随着压力的增加,不凝性气体对分离式热管冷凝段的影响减少.这些结论可用于分离式热管换热器的工程设计和控制 - Abstract : the condensation heat - exchange characteristic of a separate - type heat - pipe was studied on a 1 : 1 model . the heat pipe is heated by electricity , and working fluid is distilled water , and it is cooled by air . the experimental results show that , ( 1 ) when charging liquid ratio is 45 % , condensation heat - exchange coefficient reaches to maxium ; ( 2 ) when there is not non - condensing gas , the coeffcient decreases a little with the increase of vapour pressure , and it decreases by 9 . 5 % when the pressure increases from 0 . 16mpa to 0 . 36mpa ; ( 3 ) when there is non - condensing gas , the coefficient decreases a little , but when the gas is discharged by an exhaust value , it can be improved , when the volume content of the gas is 2 . 5 % , it can increased by 22 % ; ( 4 ) the effect of the non - condensing gas on the coefficient decreases with the increase of the pressure , and when the volume content of the gas is 5 % and the pressure increases from 0 . 16mpa to 0 . 36mpa , the coefficient increases by 6 % . the relative curves are given between condensation heat - exchange coefficient and air flowrate , charging liquid ratio and vapour pressure
文摘:建立了空气冷却实验台,热管的加热方式为电加热,工质为蒸馏水.在1 1模型上对分离式热管管内凝结换热特性、不凝性气体对凝结换热的影响及不凝性气体的扩散规律进行了试验,得出分离式热管有一最佳充液率,其值为45 %左右;凝结换热系数随着蒸汽压力的增加略有降低,在实验的压力范围内,降低了9 . 5 % ;不凝性气体对分离式热管的凝结换热仅影响冷凝段下部较小部分,通过排气阀排出不凝性气体可有效地改善冷凝段下部的凝结换热;随着压力的增加,不凝性气体对分离式热管冷凝段的影响减少.这些结论可用于分离式热管换热器的工程设计和控制