×

代数数论 meaning in English

algebraic number theory

Examples

  1. It has developed from two sources: algebraic geometry and algebraic member theory .
    它由两个方面发展而来,代数几何和代数数论
  2. As an important algebraic subject , rings are the base of algebraic geometry and algebraic theory . rings are concerned about many other subjects
    环作为一门重要的代数学科是代数几何和代数数论的基础,有许多其它相关学科领域都涉及到环。
  3. Using the theories of probability , algebra and number theory comprehensively , we investigate a class of boolean functions with three - valued walsh spectrum in the first part of this dissertation : the properties of the extended semi - bent functions , which are constructed from any two bent functions , are studied , followed by the structure characteristics of the boolean functions satisfying propagation criterion with respect to all but two vectors ; the definition and cryptographic properties of k - order quasi - bent functions are proposed whose walsh spectrum takes on only three values . some sufficient and necessary conditions are offered to decide whether a boolean function is a k - order quasi - bent function ; a special method is presented to construct the k - order quasi - bent functions , whose cryptographic properties are explored by the matrix method , which is different from the method of walsh spectrum and that of autocorrelation of boolean functions ; the application of this kind of boolean functions in the fields of stream cipher , communications and block ciphers is discussed , which shows the great importance of the fc - order quasi - bent functions ; some methodology are proposed to construct the k - order quasi - bent functions , including the complete construction by using the characteristic matrices of boolean functions , and the recursive method by two known k - order quasi - bent functions we further extend our investigation to the ring zp , where p is a prime , and the similar results are presented as far as the p - valued quasi - generalized - bent functions are considered
    本文首先综合运用概率论、代数学、数论等基础学科的理论知识,并以频谱理论作为主要研究工具,对一类谱值分布相对均匀的函数? ?广半bent函数、 k阶拟bent函数和p值k阶拟广义bent函数进行了系统、深入的研究,给出了广半bent函数定义,并探讨了广半bent函数的密码学性质;给出了k阶拟bent函数和p值k阶拟广义bent函数的定义及等价判别条件;讨论了k阶拟bent函数和p值k阶拟广义bent函数与部分bent函数和p值广义部分bent函数的关系,探讨了它们的密码学性质;给出了k阶拟bent函数和p值k阶拟广义bent函数的典型构造方法,并将对k阶拟bent函数的密码性质的研究转化到对一类特殊的矩阵的研究上;利用布尔函数的特征矩阵原则上给出了k阶拟bent函数的一种完全构造方法,还给出了从已有的p值k阶拟广义bent函数出发,递归构造变元个数更多的p值k阶拟广义bent函数的方法;初步探讨了k阶拟bent函数在序列密码、分组密码以及通信中的应用;给出了一类布尔函数walsh谱的分解式,并利用这类布尔函数的walsh谱分解式给出了一类近似稳定的布尔函数的构造,特殊情形下为k阶拟bent函数;利用代数数论的知识考察了p值k阶拟广义bent函数的谱特征,并给出了k阶拟广义bent函数与所有仿射函数的符合率特征等等。

Related Words

  1. 数论杂志
  2. 代数集刊
  3. 代数项
  4. 现代代数
  5. 代数多项式
  6. 代数语言学
  7. 结合代数
  8. 交错代数
  9. 顶点代数
  10. 地图代数
  11. 代数式处理
  12. 代数数
  13. 代数数论主题列表
  14. 代数数系统
PC Version

Copyright © 2018 WordTech Co.