×

wintner meaning in English

温特纳

Examples

  1. We have been familiar with " the law of iterated logarithm of kolmogorov " and " the law of iterated logarithm of hartman - wintner " . this paper will mainly discuss the law of iterated logarithm for some kind weighted partial sum
    各种文献中对独立随机变量序列重对数律已有深入讨论,我们已熟知“ kolmogorov重对数律”及“ hartman - wintner重对数律” 。
  2. As for i . i . d . r . v . , we get the extension of " the law of iterated logarithm of hartman - wintner " under weaker conditions . at the end of this paper , we discuss that the moment conditions of theorem are necessary to the law of iterated logarithm of this form
    对独立同分布的情形,在更弱的条件下得到“ hartmnan - wintner重对数律”的推广,并在文章最后证明了此时对这种形式的重对数律定理中矩条件是必要的。
  3. The paper consists of two chapters . in the first chapter , theory 1 [ 1 ] mainly by using the method of the law of the iterated logarithm with finite partial sum in wiener process proves hartman - wintner [ 1 ] law of the iterated logarithm for special finite partial weight sums
    本文正文分两部分,定理1主要利用[ 1 ] wiener过程下的有限项部分和的重对数律,把hartman - wintner重对数律[ 1 ]推广到对特殊加权部分和也成立。
  4. Let { xn ; n > 1 } be mutually identically independent random variables distributed according to the normal distribution , { sn , n > 1 } be finite partial sum series , the purpose of this paper is to investigate law of the iterated logarithm type results for special finite partial weight sum series { sn , n > 1 } , we assume that sn = a1sn + a2 ( s2n - sn ) + a3 ( s3n - s2n ) + . . . + ad ( sdn - s ( d - 1 ) n ) in the second chapter , theory 2 by using the method of literature [ 8 ] , we extend hartman - wintner law of iterated logarithm on the gauss distribution . we substitute negative correspond for independent . it extends the corresponding results in gauss distribution
    设{ x _ n ; n 1 }是独立同分布的且服从标准正态分布的随机变量序列, { s _ n , n 1 }是其部分和数列,讨论有限项特殊加权部分和{ s _ n , n 1 }的重对数律,其中定理2利用文献[ 8 ]提供的方法,在高斯分布上改进了hartman - wintner的重对数律,取消独立性用更弱的条件负相关代替,大大拓宽了重对数律在高斯分布中的使用范围。

Related Words

  1. wintinna river
  2. wintle
  3. winton
  4. winton disease
PC Version

Copyright © 2018 WordTech Co.