u统计量 meaning in English
u statistic
Examples
- But in more situations the random variables generating counting processes may not independent identically distributed , and in all kinds of dependent relations , negative association ( na ) and positive association ( pa ) are commonly seen . the research and apply in this aspect are rather valuable . in chap 2 we prove wald inequalities and fundamental renewal theorems of renewal counting processes generated by na sequences and pa sequences ; in chap 3 we are enlightened by cheng and wang [ 8 ] , extend some results in gut and steinebach [ 7 ] , obtain the precise asymptotics for renewal counting processes and depict the convergence rate and limit value of renewal counting processes precisely ; at last , in the study of na sequences , su , zhao and wang ( 1996 ) [ 9 ] , lin ( 1997 ) [ 10 ] have proved the weak convergence for partial sums of stong stationary na sequences . however product sums are the generalization of partial sums and also the special condition of more general u - statistic
但在更多的场合中,构成计数过程的随机变量未必相互独立,而在各种相依关系中,负相协( na )和正相协( pa )是颇为常见的关系,这方面的研究和应用也是颇有价值的,本文的第二章证明了na列和pa列构成的更新计数过程的wald不等式和基本更新定理的一些初步结果;本文的第三章则是受到cheng和wang [ 8 ]的启发,推广了gut和steinebach [ 7 ] )中的一些结论,从而得到了更新计数过程在一般吸引场下的精致渐近性,对更新计数过程的收敛速度及极限状态进行精致的刻画;最后,在有关na列的研究中,苏淳,赵林成和王岳宝( 1996 ) 》 [ 9 ] ,林正炎( 1997 ) [ 10 ]已经证明了强平稳na列的部分和过程的弱收敛性,而乘积和是部分和的一般化,也是更一般的u统计量的特况,它与部分和有许多密切的联系又有一些实质性的区别,因此,本文的第四章就将讨论强平稳na列的乘积和过程的弱收敛性,因为计数过程也是一种部分和,也可以构成乘积和,这个结果为研究计数过程的弱收敛性作了一些准备。